Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper constructs and settles a charging facility location problem with the link capacity constraint over a mixed traffic network. The reason for studying this problem is that link capacity constraint is mostly insufficient or missing in the studies of traditional user equilibrium models, thereby resulting in the ambiguous of the definition of road traffic network status. Adding capacity constraints to the road network is a compromise to enhance the reality of the traditional equilibrium model. In this paper, we provide a two-layer model for evaluating the efficiency of the charging facilities under the condition of considering the link capacity constraint. The upper level model in the proposed bi-level model is a nonlinear integer programming formulation, which aims to maximize the captured link flows of the battery electric vehicles. Moreover, the lower level model is a typical traffic equilibrium assignment model except that it contains the link capacity constraint and driving distance constraint of the electric vehicles over the mixed road network. Based on the Frank-Wolfe algorithm, a modified algorithm framework is adopted for solving the constructed problem, and finally, a numerical example is presented to verify the proposed model and solution algorithm.
EN
The main purpose of a topological index is to encode a chemical structure by a number. A topological index is a graph invariant, which decribes the topology of the graph and remains constant under a graph automorphism. Topological indices play a wide role in the study of QSAR (quantitative structure-activity relationship) and QSPR (quantitative structure-property relationship). Topological indices are implemented to judge the bioactivity of chemical compounds. In this article, we compute the ABC (atom-bond connectivity); ABC4 (fourth version of ABC), GA(geometric arithmetic) and GA5(fifth version of GA) indices of some networks sheet. These networks include: octonano window sheet; equilateral triangular tetra sheet; rectangular sheet; and rectangular tetra sheet networks.
EN
Air quality data prediction in urban area is of great significance to control air pollution and protect the public health. The prediction of the air quality in the monitoring station is well studied in existing researches. However, air-quality-monitor stations are insufficient in most cities and the air quality varies from one place to another dramatically due to complex factors. A novel model is established in this paper to estimate and predict the Air Quality Index (AQI) of the areas without monitoring stations in Nanjing. The proposed model predicts AQI in a non-monitoring area both in temporal dimension and in spatial dimension respectively. The temporal dimension model is presented at first based on the enhanced k-Nearest Neighbor (KNN) algorithm to predict the AQI values among monitoring stations, the acceptability of the results achieves 92% for one-hour prediction. Meanwhile, in order to forecast the evolution of air quality in the spatial dimension, the method is utilized with the help of Back Propagation neural network (BP), which considers geographical distance. Furthermore, to improve the accuracy and adaptability of the spatial model, the similarity of topological structure is introduced. Especially, the temporal-spatial model is built and its adaptability is tested on a specific non-monitoring site, Jiulonghu Campus of Southeast University. The result demonstrates that the acceptability achieves 73.8% on average. The current paper provides strong evidence suggesting that the proposed non-parametric and data-driven approach for air quality forecasting provides promising results.
EN
Vehicle emission calculation is critical for evaluating motor vehicle related environmental protection policies. Currently, many studies calculate vehicle emissions from integrating the microscopic traffic simulation model and the vehicle emission model. However, conventionally vehicle emission models are presented as a stand-alone software, requiring a laborious processing of the simulated second-by-second vehicle activity data. This is inefficient, in particular, when multiple runs of vehicle emission calculations are needed. Therefore, an integrated vehicle emission computation system is proposed around a microscopic traffic simulation model. In doing so, the relational database technique is used to store the simulated traffic activity data, and these data are used in emission computation through a built-in emission computation module developed based on the IVE model. In order to ensure the validity of the simulated vehicle activity data, the simulation model is calibrated using the genetic algorithm. The proposed system was implemented for a central urban region of Nanjing city. Hourly vehicle emissions of three types of vehicles were computed using the proposed system for the afternoon peak period, and the results were compared with those computed directly from the IVE software with a trivial difference in the results from the proposed system and the IVE software, indicating the validity of the proposed system. In addition, it was found for the study region that passenger cars are critical for controlling CO, buses are critical for controlling CO and VOC, and trucks are critical for controlling NOx and CO2. Future work is to test the proposed system in more traffic management and control strategies, and more vehicle emission models are to be incorporated in the system.
5
EN
A topological property or index of a network is a numeric number which characterises the whole structure of the underlying network. It is used to predict the certain changes in the bio, chemical and physical activities of the networks. The 4-layered probabilistic neural networks are more general than the 3-layered probabilistic neural networks. Javaid and Cao [Neural Comput. and Applic., DOI 10.1007/s00521-017-2972-1] and Liu et al. [Journal of Artificial Intelligence and Soft Computing Research, 8(2018), 225-266] studied the certain degree and distance based topological indices (TI’s) of the 3-layered probabilistic neural networks. In this paper, we extend this study to the 4-layered probabilistic neural networks and compute the certain degree-based TI’s. In the end, a comparison between all the computed indices is included and it is also proved that the TI’s of the 4-layered probabilistic neural networks are better being strictly greater than the 3-layered probabilistic neural networks.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.