Smoking is the most lethal social poisoning event. The World Health Organization defines smoking as the most important preventable cause of disease. Around 4.9 million people worldwide die from smoking every year. In order to analysis this matter, we aim to investigate an e-cigarette smoking model with Atangana-Baleanu fractional derivative. We obtain the existence conditions of the solution for this fractional model utilizing fixed-point theory. After giving existence conditions, the uniqueness of the solution is proved. Finally, to show the effect of the Atangana-Baleanu fractional derivative on the model, we give some numerical results supported by illustrative graphics.
Let B(z) be a finite Blaschke product of degree n. We consider the problem when a finite Blaschke product can be written as a composition of two nontrivial Blaschke products of lower degree related to the condition B ◦ M = B where M is a Mobius transformation from the unit disk onto itself.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.