Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
During fire incidents, optical fibers located with-in a fire-resistant cable are usually exposed to temperatures of 800◦C to 1000◦C. Hot fibers generate narrowband thermal (incandescent) radiation and collect broadband thermal radiation originating from the heated surroundings. The power of the second component, initially negligible, increases with time due to the rising number of fiber cracks and other defects acting as couplers for external radiation. Thermal radiation may interfere with fiber attenuation measurements performed during a fire test, but is rather unlikely to prevent data transmission with typical GbE and 10 GbE transceivers during a fire. This problem may be remedied by combining the following methods: using single mode fibers instead of multimode fibers, using bandpass filters to block thermal radiation, and selecting proper transmitter power, wavelength and photodetector.
2
EN
Fire-resistant fiber optic cables used in safety and monitoring systems playing an essential role in fire fighting and building evacuation procedures are required to temporarily maintain optical continuity when exposed to fire. However, the use of fused silica fiber at temperatures between 800◦C and 1000◦C is associated with two highly undesirable phenomena. Thermal radiation (incandescence) of optical fibers, with its intensity and spectral distribution being proportional to additional attenuation observed in the fiber’s hydroxyl absorption bands (“water peaks”) is one of them. The other consists in penetration of thermal radiation from the surroundings into the fiber, due to defects in glass, causing light scattering and resulting in fiber brittleness. Thermal radiation is a source of interference in fiber attenuation measurements performed during fire tests and affects normal operation of fiber optic data links in the event of a fire. In this article, results of laboratory tests performed on a telecom single mode and multimode fibers subjected to temperatures of up to 1000◦C are presented.
3
Content available Accurate Location of Fiber Cable Fault with OTDR
EN
The paper reviews the factors limiting the accuracy of locating a fiber optic cable fault when using an optical time domain reflectometer (OTDR) and describes an error estimation method for typical use cases. The primary source of errors lies in the complex relationship between the length of the optical fiber (measured by OTDR), its routing, cable design depending on cable design and type of installation (i.e. duct, directly buried, aerial) as well as the spare lengths used for service purposes. The techniques which considerably improve the accuracy of the fault localization processes are presented, the importance of accurate documentation of the network and of referencing the fault location to the nearest splice instead of end of the line are discussed, as is the absence of cable helix factor in data sheets.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.