Compound fault detection of gearboxes is an ambitious matter considering its interconnection and complication. An innovative means for compound fault detection based on time synchronous resample (TSR) and adaptive variational mode decomposition (AVMD) is put forward in this work. TSR used in the method can enhance fault signals of synchronous shaft gears by eliminating signal components independent of synchronous shaft. Therefore, the TSR is used to separate the synchronous shaft signal corresponding to the gear fault from the raw compound fault signal. Then a series of mode components are obtained by decomposing the synchronous shaft signals of all faults by AVMD. The variational mode decomposition (VMD) can overcome the mode aliasing problem of empirical mode decomposition (EMD), but the decomposition effect of VMD is affected by its parameter setting. Thus, the paper proposes an AVMD algorithm based on whale optimization algorithm (WOA). In the AVMD, the WOA is used to optimizes the parameters of the VMD. After AVMD decomposition, the correlated kurtosis of the mode components obtained by AVMD decomposition is calculated. Then the mode components with the maximum correlated kurtosis are selected to carry out envelope analysis. Finally, the compound fault feature can be found from the envelope spectrum to get the diagnosis results. In order to test the validity of the proposed method, a compound fault experiment is implemented in a gearbox. Through the analysis of the experimental data, it is proved that the method shows a good performance in the compound fault detection of gearbox.
PL
Wykrywanie złożonych błędów przekładni stanowi trudne zagadnienie ze względu na ich skomplikowany charakter i powiązania wewnętrzne. W pracy zaproponowano nowatorską metodę wykrywania błędów złożonych opartą na synchronicznym próbkowaniu wtórnym (TSR) oraz adaptacyjnej metodzie wariacyjnej dekompozycji modalnej (AVMD). TSR pozwala wzmacniać sygnały błędów występujących w synchronicznych przekładniach walcowych, dzięki eliminacji składowych sygnału niezwiązanych z działaniem wału synchronicznego. Dlatego też w przedstawionych badaniach, TSR wykorzystano do wyodrębnienia sygnału wału synchronicznego odpowiadającego błędowi przekładni, z surowego sygnału błędu złożonego. Następnie wszystkie sygnały błędu wału synchronicznego poddano dekompozycji za pomocą AVMD, dzięki czemu otrzymano szereg składowych modalnych. Wariacyjna dekompozycja modalna (VMD) pozwala uniknąć problemu aliasingu, który występuje w przypadku empirycznej dekompozycji modalnej (EMD), przy czym efekt dekompozycji zależy od ustawień parametrów. Dlatego w artykule zaproponowano adaptacyjny algorytm VMD oparty na algorytmie optymalizacji wielorybów (WOA), który optymalizuje parametry VMD. Następnym krokiem po dekompozycji AVMD, było obliczenie skorelowanej kurtozy składowych modalnych otrzymanych na drodze tej dekompozycji. Składniki modalne o najwyższych wartościach skorelowanej kurtozy wykorzystano do przeprowadzenia analizy obwiedni. Błąd złożony wykrywano na podstawie widma obwiedni. Skuteczność proponowanej metody sprawdzono przeprowadzając doświadczenie na przekładni, w której występował błąd złożony. Wyniki eksperymentu pokazują, że proponowane podejście stanowi skuteczną metodę wykrywania złożonych błędów.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.