Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The suction side of a surface piercing hydrofoil, as a section of a Surface Piercing Propeller (SPP), is usually exposed to three phases of flow consisting air, water, and vapour. Hence, ventilation and cavitation pattern of such section during the initial phase of water entry plays an essential role for the propeller’s operational curves. Accordingly, in the current paper a numerical simulation of a simple surface piercing hydrofoil in the form of an oblique wedge is conducted in three-phase environment by using the coupled URANS and VOF equations. The obtained results are validated against water entry experiments and super-cavitation tunnel test data. The resulting pressure curves and free surface profiles of the wedge water entry are presented for different velocity ratios ranging from 0.12 to 0.64. Nondimensional forces and efficiency relations are defined in order to present the wedge water entry characteristics. Congruent patterns are observed between the performance curves of the propeller and the wedge in different fully ventilated or partially cavitated operation modes. The transition trend from fully ventilated to partially cavitated operation of the surface piercing section of a SPP is studied and analyzed through wedge’s performance during the transitional period.
EN
There is currently a significant focus on using boundary layer control (BLC) approach for controlling the flow around bodies, especially the foil sections. In marine engineering this is done with the hope of increasing the lift – to – drag ratio and efficiency of the hydrofoils. In this paper, effects of the method on hydrodynamic characteristics and tip vortex formation of a hydrofoil are studied. Steady water injection at the tip of the hydrofoil is simulated in different conditions by using ANSYS-CFX commercial software. Validity of the proposed simulations is verified by comparing the obtained results against available experimental data. Effects of the injection on the lift, drag, and lift – to – drag ratio are studied and the ranges within which the injection has the most positive or negative effects, are determined. Furthermore, flow pattern and pressure variation are studied upon the water injection to determine the most positive and negative case and to ascertain the main reasons triggering these phenomena.
EN
In the current paper, a mathematical model is developed for performance prediction of hard-chin boats which can be used in both semi-planing and planing regimes. The proposed model bases on the 2D+T theory and implements pressure distributions over the length of the hull in order to compute the forces. To determine the forces in the semiplaning range, a function is proposed for the non-dimensional length at which the transom effect appears. Three drag components, which are: frictional drag, induced drag, and spray drag, are considered in the computations performed using an iterative method to satisfy two equilibrium equations. The validity of the proposed method is verified by comparing the predicted trim angle and resistance against the available experimental data. Based on this comparison, it is observed that the proposed method reveals satisfying accuracy in both semi-planing and planing regimes. The method is then used to study variation of hydrodynamic and hydrostatic forces as the hull makes a transition from the semi-planing regime to the planing regime. In addition, different components of the resistance are analyzed.
4
EN
Fin stabilizers are very effective devices for controlling the ship roll motion against external wave-generated moments. Lift forces due to flow around fin with an angle of attack produce anti - roll moment. Therefore control of attack angle plays important role in reducing roll of ships. This paper presents results of using a combined neural network and PID for roll control of ship with small draught. Numerical results are given of around-fin flow analysis with considering free surface effect modelled by neural network and imposed to controlling loop. Hydraulic machinery constraints are also considered in the modelling. The obtained results show good performance of the controller in reducing roll amplitude in random seas. The approach can be used for any irregular sea conditions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.