The fashion industry is characterised by the need to make demand forecasts in advance and for highly volatile products for which we often have no sales history at the time the forecasts are made. For this reason, it is necessary to propose forecast mechanisms that can cope with the given conditions. Such forecasts can be based on expert predictions for generalized product categories. In this case, the task of machine learning forecasting methods would be to divide the aggregate prediction into forecasts for individual products, in each colour and size. In the paper, we present several approaches to this specific task. We present the use of the naive method, custom nearest neighbour approach, parametric linear mixed model and an ensemble approach. Overall, the best results we obtained for the ensemble method. Our research was based on real data from fashion retail.
The paper describes a system for monitoring and diagnosing a gantry. The main goal of the system is to acquire, visualize and monitor vibration levels of the gantry crucial elements. The system is also equipped with a computing and analytical part which enables predictive maintenance related to the vibration level assessment. The system architecture can be used in other applications too, i.e. those which require a wireless network of vibration sensors to carry out diagnostic tasks.
PL
W artykule przedstawiono system monitorowania i diagnostyki suwnicy bramowej. Głównym zadaniem systemu jest akwizycja, wizualizacja i monitorowanie poziomu drgań newralgicznych elementów suwnicy. System wyposażony jest również w część obliczeniowoanalityczną, umożliwiającą realizację zadań predykcyjnego utrzymania ruchu (ang. predictive maintenance) związanych z oceną poziomu drgań. Architektura systemu umożliwia wykorzystanie go również do innych zastosowań, w których dla realizacji zadania diagnostyki wymagana jest bezprzewodowa sieć czujników drgań.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.