This paper presents new experimental data on AISI 1045 steel from the NIST pulse-heated Kolsky Bar Laboratory. The material is shown to exhibit a stifier response to compressive loading when it has been rapidly preheated, than it does when it has been heated using a slower preheating method, to a testing temperature that is below the eutectoid temperature. It is argued, using a simple model for heat generation in the workpiece and the tool during machining, due to Tlusty, that this work has important implications for the modelling of highspeed machining operations. Based on the experimental data, a modification is recommended of the well-known Johnson-Cook constitutive model of Jaspers and Dautzenberg for this material, in order to achieve improved predictions of the peak cutting temperature in machining.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.