Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
To clarify the effect of copper powder morphology on the microstructure and properties of copper matrix bulk composites reinforced with Ni-doped graphene, spherical and dendritic copper powders were selected to fabricate the Ni-doped graphene reinforced copper matrix bulk composites. The Ni-doped graphene were synthesized by hydrothermal reduction method, followed by mixing with copper powders, and then consolidated by spark plasma sintering. It is found that the Ni-doped graphene are well bonded with the dendritic copper powder, whereas Ni-doped graphene are relatively independent on the spherical copper powder. The copper base bulk composite prepared by the dendritic copper powder has better properties than that prepared by spherical copper powder. At 0.5wt.% Ni-doped graphene, the dendritic copper base bulk composite has a good combination of hardness, electrical conductivity and yield strength, which are 81.62 HV, 87.93% IACS and 164 MPa, respectively.
EN
The study investigates the effect of heat treatment on the microstructure evolution and properties of an age-hardened Cu-3Ti-2Mg alloy. The precipitated Cu2Mg and β'-Cu4Ti phases consequently yield a depletion of the Cu matrix in regards to Ti and Mg solutes, which enhances the electrical conductivity. The Cu2Mg Laves phase and β'-Cu4Ti phase precipitates increase the hardness of the alloy due to the consistency and coherency of the later phase. However, the decrease of hardness is mainly associated with the coarse microstructures, that can be formed due to the phase transformation from metastable β'-Cu4Ti phase to more stable Cu3Ti phase. In the range of experiments, the optimum process is solution treatment at 700°C for 4 h, with subsequent age-hardening at 450°C for 4 h. The electrical conductivity, hardness, tensile strength, and elongation of the Cu-3Ti-2Mg alloy were 15.34 % IACS, 344 HV, 533 MPa, and 12%, respectively.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.