Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Studies of aerosols advected to coastal areas with the use of remote techniques
EN
This paper presents the results of the studies of aerosol optical properties measured using lidars and sun photometers. We describe two case studies of the combined measurements made in two coastal zones in Crete in 2006 and in Rozewie on the Baltic Sea in 2009. The combination of lidar and sun photometer measurements provides comprehensive information on both the total aerosol optical thickness in the entire atmosphere as well as the vertical structure of aerosol optical properties. Combination of such information with air mass back-trajectories and data collected at stations located on the route of air masses provides complete picture of the aerosol variations in the study area both vertically and horizontally. We show that such combined studies are especially important in the coastal areas where depending on air mass advection directions and altitudes the influence of fine or coarse mode (in this case possibly sea-salt) particles on the vertical structure of aerosol optical properties is an important issue to consider.
2
Content available remote Seasonal variability in the optical properties of Baltic aerosols
EN
A five-year dataset of spectral aerosol optical thickness was used to analyse the seasonal variability of aerosol optical properties (the aerosol optical thickness (AOT) at wavelength λ=500 nm, AOT(500) and the Angström exponent for the 440-870 nm spectral range, α(440, 870)) over the Baltic Sea and dependence of these optical properties on meteorological factors (wind direction, wind speed and relative humidity). The data from the Gotland station of the global radiometric network AERONET (Aerosol Robotic Network, http://aeronet.gsfc.nasa.gov) were taken to be representative of the Baltic Sea conditions. Meteorological observations from Farosund were also analysed. Analysis of the data from 1999 to 2003 revealed a strong seasonal cycle in AOT(500) and α(440, 870). Two maxima of monthly mean values of AOT(500) over the Baltic were observed. In April, an increase in the monthly mean aerosol optical thickness over Gotland most probably resulted from agricultural waste straw burning, mainly in northern Europe and Russia as well as in the Baltic states, Ukraine and Belarus. During July and August, the aerosol optical thickness was affected by uncontrolled fires (biomass burning). There was a local minimum of AOT(500) in June. Wind direction, a local meteorological parameter strongly related to air mass advection, is the main meteorological factor influencing the variability of aerosol optical properties in each season. The highest mean values of AOT(500) and α(440, 870) occurred with easterly winds in both spring and summer, but with southerly winds in autumn
EN
In this paper we compare the following MERIS processors against sea-truthing data: the standard MERIS processor (MEGS 7.4.1), the Case 2 Regional processor (C2R) of the German Institute for Coastal Research (GKSS), and the Case 2 Water Properties processor developed at the Freie Universität Berlin (FUB). Furthermore, the Improved Contrast between Ocean and Land processor (ICOL), a prototype processor for the correction of adjacency effects from land, was tested on all three processors, and the retrieval of level 2 data was evaluated against sea-truthing data before and after ICOL processing. The results show that by using ICOL the retrieval of spectral reflectance in the open sea was improved for all processors. After ICOL processing, the FUB showed rather small errors in the blue, but underestimated in the red -34% Mean Normalised Bias (MNB) and 37% Root Mean Square (RMS). For MEGS the reflectance in the red was underestimated by about -20% MNB and 23% RMS, whereas the reflectance in the other channels was well predicted, even without any ICOL processing. The C2R underestimated the red with about -27% MNB and 29% RMS and at 412 nm it overestimated the reflectance with about 23% MNB and 29% RMS. At the outer open sea stations ICOL processing did not have a strong effect: the effect of the processor diminishes progressively up to 30 km from land. At the open sea stations the ICOL processor improved chlorophyll retrieval using MEGS from -74% to about 34% MNB, and TSM retrieval from -63% to about 22% MNB. Using FUB in combination with ICOL gave even better results for both chlorophyll (25% MNB and 45% RMS) and TSM (-4% MNB and 36% RMS) in the open Baltic Sea. All three processors predicted TSM rather well, but the standard processor gave the best results (-12% MNB and 17% RMS). The C2R had a very low MNB for TSM (1%), but a rather high RMS (54%). The FUB was intermediate with -16% MNB and 31% RMS. In coastal waters, the spectral diffuse attenuation coefficient Kd(490) was well predicted using FUB or MEGS in combination with ICOL (MNB about 12% for FUB and 0.4% for MEGS). Chlorophyll was rather well predicted in the open Baltic Sea using FUB with ICOL (MNB 25%) and even without ICOL processing (MNB about 15%). ICOL-processed MEGS data also gave rather good retrieval of chlorophyll in the coastal areas (MNB of 19% and RMS of 28%). In the open Baltic Sea chlorophyll retrieval gave a MNB of 34% and RMS of 70%, which may be due to the considerable patchiness caused by cyanobacterial blooms. The results presented here indicate that with the MERIS mission, ESA and co-workers are in the process of solving some of the main issues regarding the remote sensing of coastal waters: spatial resolution; land-water adjacency effects; improved level 2 product retrieval in the Baltic Sea, i.e. the retrieval of spectral reflectance and of the water quality products TSM and chlorophyll.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.