Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The identification of gas content is very important for exploration and development of coalbed methane (CBM) reservoirs. As a kind of gas-bearing reservoirs in coal seam, CBM reservoirs usually show strong heterogeneity, which makes the gas content varies greatly in the strata. What’s more, the thin interlayer that is common in coal-bearing formation makes it difficult to predict the favorable gas-bearing distribution based on conventional methods. In this study, a seismic waveform indication inversion method was applied to reveal the gas content of No. 8 coal seam reservoirs in the Upper Carboniferous Benxi Formation of the DJ area in the eastern of the Ordos Basin, China. The first step of this method is to calculate the p-wave impedance inversion volume of No. 8 coal seam. The second step is to build the correlation between elastic parameters and gas content in No. 8 coal seam. Through the statistical analysis based on velocity, density, p-wave impedance and measured gas content data of 16 wells, the fitting formula between p-wave impedance and gas content is obtained, with a highest correlation coefficient up to 96%. The third step is to calculate the gas content data volume from the p-wave impedance inversion volume by the above fitting formula, and then the quantitative plane distribution of gas content in No. 8 coal seam can be predicted. The prediction results indicate that the gas content of No. 8 coal seam can be divided into two Classes. To verify the reliability of the inversion results, the production data of well X11 was applied to verify the gas content which located in the Class I area. The application of seismic waveform indication inversion has provided a precise prediction for the spatial distribution of gas content in CBM reservoirs, serving as a basis for locating and designing wells for CBM development.
EN
The tilt angle (i.e., TDR) provides an efficient way to recognize the horizontal locations of multi-source geological bodies at different depths and inclination angles. The tilt-depth method was initially derived by applying magnetic formulas and used to calculate the depth of magnetic sources. Recently researchers have attempted to extend this method to interpret depths in gravity field data. The tilt-depth method of gravity anomalies (i.e., GTilt-depth) could capture the depth of a buried source effectively, which makes it superior at deciphering the basement relief. Meanwhile, Tilt-Euler deconvolution (i.e., Euler deconvolution of TDR) has been utilized for estimating a source’s position from gridded data automatically, which requires no structural index. However, analytical singularities can be produced when performing inversion with the Tilt-Euler deconvolution owning to the derivatives of TDR being incalculable when the horizontal derivative is zero. The improved Tilt-Euler deconvolution provided an efficient way to eliminate analytical singularities and obtain more stable solutions. The results from the theoretical model show that the GTilt-depth method and improved Tilt-Euler deconvolution could be applied to calculate the buried depths more accurately and effectively. Application of these methods shows that they are able to capture more detailed features, and provide more straightforward and accurate results of depth, than traditional methods. Furthermore, the results obtained from the gravity data in Sichuan Basin show that the basement depth ranges from 3 to 11 km, and 3 to 7 km in the central uplift, which contains a local depression with a depth of 8 km. The basement exhibits a general pattern of “shallow in middle and deep in east and west”, which is consistent with the results revealed by gravityseismic jointly interpreted profile. This research provides a better indication of the basement structure when interpreting the regional geology in Sichuan Basin.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.