Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The advancement of the wire arc additive manufacturing (WAAM) process has been significant due to the cost-effectiveness in producing large metal components with high deposition rates. With the growth in the understanding of WAAM, researchers have found that the microstructure and mechanical properties of the fabricated components are greatly improved. As a result, a diverse range of materials have been linked to the process, leading to a wider application of WAAM in various industries. Thus, this review paper provides a comprehensive analysis of the recent advancements in WAAM, a technology that combines arc welding with additive manufacturing. The focus is on the microstructure, mechanical properties, materials used, process-related defects, and post-process treatments. The paper aims to offer guidance on producing high-quality and defect-free components by aligning the material characteristics with the capabilities of various WAAM techniques. The results of the paper highlight the strengths and limitations of WAAM and provide insights into its future prospects. This information is valuable for academics, designers, and manufacturers in the field, serving as a milestone for future WAAM research and application.
EN
In the past few years, the functionally graded materials (FGMs) have proved useful in many industrial applications such as aerospace, automotive, transportation and infrastructure because of their advantages like the ability to control mechanical properties, residual stresses, wear, and corrosion behavior through a smooth gradation of the elements in a particular direction of the products. In this current work, the microstructural and wear properties of AZ91 alloy reinforced with silicon carbide particles (SiCp) produced through the centrifugal casting method were investigated. Four weight fractions of SiCp with 10 µm average size were used to fabricate functionally graded (FG) tubes in the two mold rotational speeds of 1200 and 1500 rpm. Microstructural, microhardness, and wear tests were used for characterizing the developed FG tubes. From the results obtained, the gradient distribution of SiC particles inside the AZ91 matrix alloy substantially improved hardness and wear resistance for the FG tubes comparing to unreinforced alloy. Moreover, the mold rotational speed is the main factor in controlling the distribution of particles, thus determining the gradient properties of the manufactured FG tubes. These findings suggest that FG tubes are useful for aerospace and automotive applications that require more excellent surface resistance.
EN
In recent years, the composite materials have been very desirable by researchers for many engineering applications such as aviation and biomedical because of the tremendous characteristics of magnesium matrix metal composite. This current investigation aims to develop the AZ91/SiCp composites with various weight fractions (0, 2.5, 5 and 10 wt%) of silicon carbide particles via the stir casting method. The effect of SiC particles content on microstructure, mechanical and wear behaviour was investigated. The optical microscope, scanning electron microscopy and EDX analyses were utilized to detect the distribution of hard particles as well as the interface between the alloy and particles. Based on the findings, the homogeneous distribution of particles, refinement of grains in addition to good bonding between AZ91 alloy and particles have been achieved in produced composites. Therefore, the mechanical characteristics and wear performance are improved in composites compared with the unreinforced alloy. Moreover, these results suggest that for applications demanding high mechanical properties and wear resistance the AZ91/SiCp will be effective composites.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.