Many laser scanners depend on their mechanical construction to guarantee their measurements accuracy, however, the current computational technologies allow us to improve these measurements by mathematical methods implemented in neural networks. In this article we are going to introduce the current laser scanner technologies, give a description of our 3D laser scanner and adjust their measurement error by a previously trained feed forward back propagation (FFBP) neural network with a Widrow-Hoff weight/bias learning function. A comparative analysis with other learning functions such as the Kohonen algorithm and gradient descendent with momentum algorithm is presented. Finally, computational simulations are conducted to verify the performance and method uncertainty in the proposed system.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.