In connection with the increase in the price of fuel based on hydrocarbons, the search and use of alternative types of fuel for machines in the mining and oil production industry is quite relevant today. Most of the existing alternative fuels by themselves cannot be considered as ready-to-use motor fuels. One of the ways to solve this problem is to use their mixtures with commercial fuels in certain ratios. This work deals with the development and research of the main characteristics of the mixer for obtaining mixed fuels based on diesel fuel and soybean oil, as well as the results of the study of the physical and operational properties of the obtained mixtures of different volume ratios of diesel fuel and soybean oil. The process of obtaining a mixed alternative fuel based on diesel fuel and soybean oil was implemented on a developed installation consisting of a mixer, the design of which is protected by a patent of Ukraine, and a gear pump. The study of the characteristics of the mixer as part of the installation showed that at a temperature of the components of the alternative fuel of 20°С, with a loss of full pressure on the mixer Δр ≈ (60-65) kPa, the volume consumption of soybean oil reached 10.7.10-6 m3/s. The time of preparation of the fuel mixture in the amount of 195 liters with a content of soybean oil of 10% ranged from 30 to 33 minutes. As research has shown, mixing soybean oil with diesel fuel in the amount of 5-50% vol. provides an improvement in viscosity-temperature properties and makes it possible to use such mixtures in diesel engines without changes in the design of the power supply system and regulation of fuel equipment, which characterizes soybean oil as a promising additive to diesel fuels to improve their technical and operational performance.
In this study hardfacing by flux-cored arc welding with Fe-Mo-Mn-B-C-based alloy as an alternative technique for improving wear resistance of mining machines conical picks was investigated. The microstructure of hardfaced layer consists of the uniformly distributed faceted grains of binary (Fe,Mn)Mo2B2 boride phase with average size of 25 μm and austenite-based eutectic. The hardness measured by microindentation and microscratching techniques across the interfaces between deposited layer and base steel was within 2.2 – 18 GPa. No welding defects such as cracks, pores or non-metal inclusions in the hardfaced layer and heat affected zones were detected. Comparative studies of the developed hardfacing alloy with commercially available Capilla HR MAG hardfacing and heat treated 35HGS steel were carried out using testing machine developed at the department of machinery engineering and transport of AGH university of science and technology for semi-industrial wear tests of mining machines conical picks. Wear measurement results show that using hardfacing with proposed alloy of Fe-Mo-Mn-B-C system leads to decreasing of impact-abrasion wear rate in approximately 3 times than that for tested commercial materials. This allows to recommend hardfacing by FCAW with proposed material in form of flux-cored wire for conical picks insert holders’ surfaces during mining of hard rocks.
In this work were analyzed factors and working conditions that leads to the wearing of junk mills tools that are a part of junk removal equipment used in drilling and workover of borehole. Such equipment is a part of oil and gas industry and work under condition of intense abrasive wearing with increased pressures and cyclic loads. Was established that traditional hardfacing materials based on the Fe-Cr-C system are not effective for improvement of abrasion resistance of elements of such equipment due to their low crack resistance and low hardness of chromium carbides. The aim of this work was to increase a durability of that equipment by using of flux cored electrodes with reaction components of pure metal powders, which leads to forming the fine-grained structure with increased hardness. Powders of Ti, Mo, B4C and their combinations were used. Structures of the hardfacing coatings were investigated by method of metallography, scanning electron microscopy (SEM). Abrasion wear tests were held under condition of fixed and non-fixed abrasion. Using of pure metal powders led to formation of a fine-grained structure with grains of Mo2FeB2 that forms around TiC, which work as modifier. It was investigated that the researched material based on Fe-Ti-Mo-C-B system that was used for increasing the wear resistance of junk mills led to increasing of the TBO period in 1.5-1.6 times comparing with serial hardfacing materials based on tungsten.
Comparative analysis of the strength properties of a drill stand intended for a power tool made by the selected manufacturer and the stand of own design is the paper subject. The specifics of high-speed power tools as well as their capabilities, practical applications and limitations are described. The design of a commercially available drill stand for a drill press rotary tool is presented. Basic issues in the field of CAD modelling, as well as the most important concepts related to the finite element method, as well as the stages of strength analysis using the above-mentioned method, are presented. Based on the simplified model and the analysis of the presented stand, a CAD model of a drill press stand, designed in accordance with own alternative concept is given. Results of the analysis of the static stiffness of both models using the finite element method and the conclusions drawn on this basis are presented.
One of the basic methods of mechanical rock mining is cutting, which faces increasingly difficult working conditions. Despite the rapid development of machines used in underground and opencast mining as well as in tunnel building, construction industry and road engineering, the problem of insufficient durability of mining tools remains unsolved. In addition to drilling and, to a lesser extent, planing, cutting provides a huge market for tools. Currently, the process of cutting is mainly based on conical picks. The cutterheads of cutting machines are equipped with several dozen, and frequently – more than one hundred conical picks, which, due to their workability and abrasiveness, sometimes work only a few hours. There is a market demand for over two hundred models of conical picks. This is due to the huge variety of shapes and sizes of picks as well as the methods of their mounting in the holder. The article briefly presents various solutions of conical picks, their construction, methods of protection, dimensions and materials used. Next, based on materials produced by ZWM Carbonex, the classic method of their manufacture using the turning technology has been described. The authors have also presented briefly the use of die forging for the large-scale production of picks, applied by Górnicza Fabryka Narzędzi Sp. z o.o.
The article examines the influence of migration processes on the formation and development of production capacities of countries. It is emphasized that population migration significantly affects the social and economic indicators of the country; under such influence, they can have both positive and negative trends. The article presents the main positive and negative consequences of population migration for donor countries, recipient countries, and for migrants themselves. It is proved that one of the most popular and promising is educational migration, which, under certain favorable circumstances, makes it possible to form highly qualified personnel, deepen international cooperation between higher education institutions of different countries, and strengthen the joint use of educational and scientific potential. The attention is focused on the fact that Ukraine today acts as a donor country and a leader in the number of young people who travel to study in Poland. It is indicated that in order to effectively regulate migration processes by the state, it is appropriate to ensure interaction between higher education institutions of different countries, namely, in the sphere of: a double-degree program, foreign internships, and holding joint international conferences. Using the example of Ivano-Frankivsk National Technical University of Oil and Gas and Ternopil National Economic University, it is shown how such interaction is implemented in practice and its consequences. The conclusions are based on the fact that educational migration is one of the most favorable types of migration. With its proper control by the state, it is possible to stimulate the development of the production industry in countries and improve social and economic indicators.
A variety of magnetic fishing tools poses the task of the optimal choice of tool for eliminating accidents during the construction, operation and repair of wells. Existing criteria for assessing the quality of fishing magnets are characterized by the complexity of the determination and the ambiguity of the results. Therefore, the aim of research is development of a new approach to determining the technical level of fishing tools of various types and designs. A complex criterion has been developed that allows to evaluate the technical level of magnetic systems by correlating the actual and theoretical values of the total and specific lifting forces. Also it has been carried out a qualimetric analysis of magnetic tools, which are currently offered by world manufacturers. As a result, mathematical models are found that describe the average and modern world level of devices with specific lifting force. Technical decisions are proposed, the implementation of which in the design of magnetic systems of fishing tools will allow to achieve high values of lifting force. Application of the proposed complex criterion along with the results of qualimetric analysis will make it possible to objectively assess the technical level of magnetic fishing tools both at the design stage and during serial production.
One of the main elements of control over wells in the process of their construction is the blowout equipment, which includes annular preventers. This also applies to wells that provide degassing of coal veins to reduce their gas dynamic activity. Modern technology of work requires expansion of the functionality of the sealing unit of the annular preventers with the simultaneous provision of its operational characteristics. Determining the necessary durability of seals for different operating modes is the study of their stress-strain state. The paper deals with the possibility of using simulation modeling in the annular preventers design situations and within the study of the armature geometry influence of the sealant fittings on its stress-strain state. The method of determining the material constants to realize the Mooney-Rivlin model has been proposed. The behavior of low-density rubber in software product has been described by the finite element method. The aggregation error of experimental and theoretical studies is 5%. Therefore, the preconditions and the possibility of using simulation modeling in the design of annular preventers devices with increased operational characteristics have been created and confirmed.
The variety of accidents which happen during the construction of oil and gas wells causes the expansion in the use of magnetic fishing tools. However, the known tools based on permanent magnets have a significant drawback involving the flat working surface of the magnetic system that does not permit to achieve a considerable attraction force to a fished object of complex geometric shape. Therefore, the aim of the research is to increase the efficiency of removal the objects of irregular geometric shape from the wells by enlarging the area of contacting them. For that purpose, it has been developed a fundamentally new design of the large-diameter fishing tool with the moving magnetic systems capable of copying the shape of the objects to be fished. Each magnetic system, which is compound of permanent rare-earth neodymium magnets and concentrically placed magnetic cores, shall be held by the magnetic field of adjacent systems with opposite polarity. There were conducted theoretical studies using the finite element method to determine the working capacity of the designed tool. As a result, it has been found the value of hoisting capacity during the interaction of magnetic systems with the roller cone of the drill bit; this fact confirms the capability of fishing the objects of irregular geometric shape. In addition, it has been explored the influence of the material of the fished object on the power characteristics of magnetic systems. The application of the designed magnetic tool allows removing the ferromagnetic objects from the well regardless of their shape, weight and position on the bottom hole. Apart from that, the given tool may be used in the areas where the technology of work is related to drilling wells.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.