Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper presents the possibility of fabricating ceramic-metal composites by an innovative method of centrifugal slip casting in the magnetic field. It was examined whether the use of this method would allow obtaining a gradient concentration of metal particles in the ceramic matrix. In the applied technique, the horizontal rotation axis was used. The study investigated the effect of solid phase content on the properties and microstructure of the products. Water-based suspensions with 35, 40, 45 and 50 vol.% of solid-phase content were prepared with 10 vol.% additional of nickel powder. The viscosity of prepared slurries was considered. The gradient distribution of nickel particles in the zirconia matrix was observed on SEM. Vickers hardness of ZrO2-Ni composites has been measured. The research revealed that the physical properties depend on the volume fraction of solid content and increase as the volume of solid content increases.
EN
Industries that rely on additive manufacturing of metallic parts, especially biomedical companies, require material science-based knowledge of how process parameters and methods affect the properties of manufactured elements, but such phenomena are incompletely understood. In this study, we investigated the influence of selective laser melting (SLM) process parameters and additional heat treatment on mechanical properties. The research included structural analysis of residual stress, microstructure, and scleronomic hardness in low-depth measurements. Tensile tests with specimen deformation analysis using digital image correlation (DIC) were performed as well. Experiment results showed it was possible to observe the porosity growth mechanism and its influence on the material strength. Specimens manufactured with 20% lower energy density had almost half the elongation, which was directly connected with the porosity growth during energy density reduction. Hot isostatic pressing (HIP) treatment allowed for a significant reduction of porosity and helped achieve properties similar to specimens manufactured using different levels of energy density.
EN
The paper evaluates the causes related to the fatigue damage in a conveyor slide plate, exposed to high-frequency cyclic loads. The plate was made of 1.4301 acid-resistant steel. The fractography showed that the plate failure was caused by fatigue crack. A nonlinear analysis of plate deformation was conducted using the finite element method (FEA) in LS-Dyna software. The maximum normal stresses in the plate fracture were used in further analysis. A “fatigue limit” calculated initially using a FITNET procedure was above the maximum stress calculated using FEA. It indicates that the structural features of the plate were selected correctly. The experimental test results for 1.4301 acid-resistant steel were described using a probabilistic Weibull distribution model. Reliability was determined for the obtained S-N curve at 50% and 5% failure probability allowing for the selected coefficients (cycle asymmetry, roughness, variable load) and the history of cyclic loading. Cumulative damage was determined using the Palmgren-Miner hypothesis. The estimated fatigue life was similar to the actual value determined in the operating conditions for the S-N curve at 5% failure probability. For engineering calculations, the S-N curve at max. 5% failure probability is recommended.
EN
The present research is focused on the characterization of the composites from Al2O3-Cu-Ni system. Two methods of ceramic-metal composite forming were applied: uniaxial powder pressing and Pulse Plasma Sintering (PPS). To obtain the samples the powder mixtures containing 85 vol.% of Al2O3 and 15 vol.% of metal powders were used. Influence of the sintering process on microstructure and mechanical properties of the two series of the composites was analyzed in detail. The selected physical properties of samples were characterized by Archimedes immersion method. Vickers hardness and the fracture toughness of the composites was determined as well. The microstructure of the composites was characterized by XRD, SEM, EDX. Fractography investigation was carried out as well. Independently on composite production method Al2O3, Cu, Ni, and CuNi phases were revealed. Fractography investigation results revealed different character of fracture in dependence of fabrication method. Pulse Plasma Sintered samples were characterized by higher crack resistance and higher Vickers hardness in comparison to the specimens manufactured by uniaxial pressing.
EN
The subject of the study was the production and characterization of three ceramic-metal graded composites, which differed in addition of the metallic phase. The following composites systems were investigated: Al2O3-Mo, Al2O3-Cu, Al2O3-W. Composites were produced by centrifugal slip casting method. This technique combines the classic casting of the slurry into porous molds with the action of centrifugal force. As a result, sleeve-shaped shapes with a metallic phase gradient were obtained. X-ray phase analysis have not revealed new phases in the produced composites. The type of metallic phase and its distribution in the ceramic matrix influenced the hardness of the produced composites.
EN
The paper has presented the results of theoretical studies and experimental tests of the plastic deformation of multi-layered Ti/Al/Mg specimens. Theoretical studies were carried out using the Forge2011® computer program. Physical modeling, on the other hand, was performed using the Gleeble3800 simulator. Cuboidal specimens were cut off from the plates obtained in the explosive welding method. Based on the obtained investigation results it has been found non uniform deformation of the particular layer as a result their different value of flow stress.
EN
In this work results of poly(propylene) fibers (PP), from recycling process, added into concrete mixture based on portland cement was characterized. The main purpose of this research was to identify direct influence of the fibers addition on the concrete mechanical strength. The recipe of the concrete was prepared using three types of aggregates with different grain size: 0.125–0.250, 0.250–0.500 and 0.500–1.000 mm, deflocculant based on polycarboxylates, water and portland cement (42.5 MPa). To identify structures of the researched samples and fibers light microscopy (LM) observation was performed. Basic properties of concrete mixture were defined by slump cone test and setting time. Mechanical properties such as compressive strength and bending test after 1, 7, 14 and 28 days were characterized. Obtained results were compared with mixtures without fibers modifications. Study was proven that all chosen fibers from recycled origin revealed increased effect on final mechanical properties of concrete and are very perspective for future application in concrete technology.
EN
This paper describes a study of explosively welded, commercially pure titanium-stainless steel 316L plates. Following welding, the plates were heat-treated at the temperature of 600°C for 90 minutes. Examinations of the bond structure were carried out before and after heat treatment to investigate the processes taking place during explosive welding of materials. Observations were performed using light, scanning electron (SEM) and transmission electron microscopy (TEM). The mechanical properties were examined applying three-point bending tests with cyclic loads. Fractographic examination and hardness measurements were also performed. It has been found that the bonding zones are characterized by a specific microstructure, chemical composition and microhardness. The heat treatment used in the study increases the relative volume of brittle intermetallic phases, causing a reduction in fatigue strength of the joint.
9
Content available remote Innovative Tool for Friction Stir Welding of Titanium Plates
EN
The objective of the study was to analyze the level of wear of the tool made of sintered tungsten heavy sinter used for friction stir welding (FSW) of titanium alloys. The study includes an analysis of the microstructure of the tool, measurements of surface roughness, friction tests using 100Cr6 ball bearing and friction tests using a tungsten carbide WC. Based on the analysis of the presented results, it can be stated that the test material – pulled together with the titanium – will be characterized by high resistance to wear.
EN
This paper presents the results of fatigue and metallographic tests of explosively clad¬ded titanium-steel bimetal.
PL
Badania prezentowane w pracy dotyczą kompozytu metalicznego, zwanego platerem, uzyskiwanego podczas tak zwanego platerowania wybuchowego. Celem pracy jest kompleksowe przedstawienie zagadnień dotyczących bimetalu stal-tytan w kontekście badań zmęczeniowych i materiałowych. Wyniki tych badań zostaną wykorzystywane podczas opracowywania modeli opisujących mechanikę zniszczenia oraz rozkładów naprężeń i odkształceń w materiałach platerowanych metodą wybuchową.
EN
The paper contains a description of fatigue life tests of titan-steel bimetal. The study involved specimens made of bimetal which was a combination of S355J2 steel and SB G1 265 titanium, which was imposed in the material by explosive cladding method. The research shows that the fatigue life of specimens made of native material, derived from cladded plate is less than the life of specimens of titanium-steel bimetal
PL
W pracy zawarto wyniki badań zmęczeniowych i metalograficznych bimetalu będącego połączeniem stali S355J2 z tytanem SB265G1 przy pomocy technologii zgrzewania wybuchowego. Analiza wyników badań dowodzi, że proces zgrzewania wybuchowego i obróbki cieplnej mają wpływ na trwałość zmęczeniowa materiału. Ponadto stwierdzono, że w procesie projektowania elementów narażonych na zmiennę obciążenia należy uwzględnić własności wszystkich materiałów wchodzących w skład plateru.
PL
Technologia zgrzewania wybuchowego pozwala na trwałe połączenie materiałów o bardzo odmiennych właściwościach, trudne do osiągnięcia innymi technikami spajania materiałów [1,2]. Uzyskane tą metodą platery są materiałami o właściwościach silnie gradientowych oraz posiadają złożony charakter strefy połączenia. Jednym z podstawowych obszarów stosowania materiałów platerowanych są konstrukcje aparatów procesowych (przemysł energetyczny i chemiczny. Badania prezentowane w pracy dotyczą kompozytu metalicznego, zwanego platerem, uzyskiwanego podczas tak zwanego platerowania wybuchowego. Celem pracy jest kompleksowe przedstawienie zagadnień dotyczących bimetalu stal-tytan w kontekście badań zmęczeniowych i materiałowych. Wyniki tych badań zostaną wykorzystywane podczas opracowywania modeli opisujących mechanikę zniszczenia oraz rozkładów naprężeń i odkształceń w materiałach platerowanych metodą wybuchową.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.