Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Passive smart textiles are the textile structures that can sense stimuli, which may come from mechanical, thermal, electrical, or chemical sources. Textile strain sensors are smart textiles products in which the sensor’s resistance changes with applied strain. This study consists in the development of a textile strain sensor and its application on a Multifunctional Intelligent Elbow Brace (MIEB). The hand-knitted sensor was developed using knitting needles. The material used for this sensor was conductive yarn and lycra. The sensor developed was subjected to a stretch recovery test using a universal testing machine,, and the electrical resistance was measured using an electrical multimeter. The sensor developed has good sensing ability against cyclic loading and unloading at a 5%, 20%, 35% strain level. After testing, the sensor was stitched on an elbow brace to develop an MIEB. This study involved the best economical method for measuring the bowling angle of the player using this MIEB without any need for a biomechanical test, which is very expensive. This MIEB can also be used for rehabilitation purposes and for monitoring joint movement.
2
Content available remote Hydrophilization of Polyester Textiles by Nonthermal Plasma
EN
Polyester is a popular class of material used in material engineering. With its 0.4% moisture regain, polyethylene terephthalate (PET) is classified as highly hydrophobic, which originates from its lack of polar groups on its backbone. This study used a parallel-plate nonthermal plasma dielectric barrier discharge system operating at medium pressure in dry air and nitrogen (N2) to alter the surface properties of PET fabrics to increase their hydrophilic capabilities. Water contact angle, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were utilized to analyze any effect from the plasma treatment. The wettability analysis revealed a reduction in the contact angle of more than 80% within 5 min for both discharges. Scanning electron microscopy analysis showed no microscopic damage to the fiber structure, guaranteeing that the fabrics’ structural integrity was preserved after treatment. AFM analysis showed an increase in the nanometer roughness, which was considered beneficial because it increased the total surface area, further increasing the hydrophilic capacity. XPS analysis revealed a sharp increase in the presence of polar functional groups, indicating that the induced surface changes are mostly chemical in nature. Comparing that of untreated fabrics to treated fabrics, a Increase in water absorption capacity was observed for air-treated and N2-treated fabrics, when these fabrics were used immediately after plasma exposure.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.