Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the present paper, we have studied the temperature and pressure dependent creep stress analysis of spherical shell. The review is critical to enhance the warm resistance of spherical shells in high-temperature conditions. The effect of different parameters was studied and it was noticed that the parameter n has a significant influence on the creep stresses and strain rates. Creep stresses and strain rates are ascertained on the premise of summed up strain measures and Seth’s transition hypothesis. This investigation is completed to demonstrate the impacts of temperature on the creep stresses and strain rates in the spherical shell. The resulting quantities are computed numerically and depicted graphically. It has been watched that the spherical shell made of an incompressible material is on more secure side of configuration when contrasted with the shell made of a compressible material.
EN
This work presents a systematic study of the effect of ZnSe nanocrystals (NCs) concentration on the optical and luminescent properties of poly N-vinylcarbazole (PVK) polymer nanocomposites. The ZnSe nanocrystals were synthesized by a simple co-precipitation chemical route, while PVK:ZnSe nanocomposite films were fabricated using the spin coating technique. The samples were characterized by XRD, TEM, SEM, UV-Vis and fluorescence techniques. The X-ray diffraction and TEM studies confirmed the particle size, microstructure and spherical shape of the synthesized nanocrystals. The ZnSe nanocrystals in PVK caused a decrease in optical gap with increasing concentration of nanocrystals. The emission spectra exhibited augmentation in intensity up to 70 wt.% of nanoparticles while further addition resulted in a decrease in luminescence. The structure-property relationships obtained for the present system are important for developing low cost illumination devices.
EN
The purpose of this paper is to present study of thermal creep stress and strain rates in a non-homogeneous spherical shell by using Seth’s transition theory. Seth’s transition theory is applied to the problem of creep stresses and strain rates in the non-homogeneous spherical shell under steady-state temperature. Neither the yield criterion nor the associated flow rule is assumed here. With the introduction of thermal effect, values of circumferential stress decrease at the external surface as well as internal surface of the spherical shell. It means that the temperature dependent materials minimize the possibility of fracture at the internal surface of the spherical shell. The model proposed in this paper is used commonly as a design of chemical and oil plants, industrial gases and stream turbines, high speed structures involving aerodynamic heating.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.