Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Design modification of water wheel turbine with various configuration variations
EN
One of the obstacles in the open loop cooling system is that the seawater that will be discharged back to the source does not meet the requirements for the quality standards for generation wastewater. So that the waste water pit requires a long channel construction. The construction of a long waste water pit channel is needed so that convectional heat transfer occurs in the channel to achieve the temperature requirements of the generated waste water, which is around 30o C. In this study, 4 fin configuration variations were used, namely: Ʌ-shaped four-angled fins, V-shaped four-angled fins, two parallel transverse four-angled fins (═), and two parallel four-pointed fins longitudinally (||) . With open channel dimensions of 7 m × 0.1 m × 1.3 m and the dimensions of the water wheel turbine model, namely diameter: 0.4 m, blade size: 0.8 × 0.8 m and a total of 16 blades. Based on the research results it is known that the type of fin that has the ability to reduce temperature quickly is the type of two fins with four parallel transverse angles with a temperature drop of 5.56o C with a tilt position of 0o , while the temperature drop with a tilt position of 30o is 4.54o C. However, this type of fin generates little power because the water that hits the turbine blades will be accommodated on the inside of the turbine fin even by utilizing a large discharge. The type of fin that produces the highest efficiency (%) and output power (Watts) is the type of two parallel four-angled longitudinal fins (||) with the highest efficiency value of 61.71% on a slope of 0o C and 84.95% on a slope of 30o C in order to obtain the greatest output power of 0.48 Watt at a slope of 0 o C and 0.56 Watt at a slope of 30o C.
PL
Jedną z przeszkód w systemie chłodzenia z obiegiem otwartym jest to, że woda morska, która będzie odprowadzana z powrotem do źródła, nie spełnia wymagań norm jakościowych dla wytwarzania ścieków. Aby studzienka ściekowa wymagała budowy długiego kanału. Konieczna jest budowa długiego kanału ściekowego, aby w kanale następowała konwekcyjna wymiana ciepła w celu osiągnięcia wymaganej temperatury wytwarzanych ścieków, która wynosi około 30oC. W tym badaniu zastosowano 4 warianty konfiguracji płetw, a mianowicie: czterokątne płetwy w kształcie Ʌ, czterokątne płetwy w kształcie litery V, dwie równoległe poprzeczne czterokątne płetwy (═) i dwie równoległe czteroramienne płetwy wzdłużnie (| |) . O wymiarach otwartego kanału 7 m × 0,1 m × 1,3 m oraz wymiarach modelu turbiny koła wodnego, a mianowicie średnicy: 0,4 m, wielkości łopatek: 0,8 × 0,8 m i łącznie 16 łopatek. Na podstawie wyników badań wiadomo, że typem płetwy, który ma zdolność szybkiego obniżania temperatury jest typ dwóch płetw z czterema równoległymi kątami poprzecznymi o spadku temperatury 5,56oC przy pozycji pochylenia 0o, natomiast spadek temperatury przy pozycji pochylenia 30o wynosi 4,54oC. Jednak ten typ płetwy generuje niewielką moc, ponieważ woda, która uderza w łopatki turbiny, będzie zatrzymywana po wewnętrznej stronie płetwy turbiny, nawet przy dużym wypływie. Typ płetwy, który zapewnia najwyższą wydajność (%) i moc wyjściową (W) to typ dwóch równoległych, czterokątnych podłużnych płetw (||) o najwyższej wartości sprawności 61,71% na zboczu 0oC i 84,95% na zboczu nachylenie 30oC w celu uzyskania jak największej mocy wyjściowej 0,48 W przy nachyleniu 0 oC i 0,56 W przy nachyleniu 30oC.
EN
Wind energy has become the most popular renewable based power plant for the last decades due to its environment benighted and large natural availability. Although modern wind turbine successfully installed worldwide, some areas with low speed wind characteristic might require a special innovation to increase the amount of conversion of extracted wind energy into electric power. One of among popular techniques for the low speed wind turbine is Diffuser Augmented Wind Turbine (DAWT) which are continued to develop from time to time for example by using numerical simulation as an early stages before manufacturing. In this paper a numerical simulations are performed to investigate the effect of attached flange on wind velocity characteristics. Numerical simulations were carried out for the flow field around various flange diffuser type structures to improve the performance of a DAWT. The present studies specifically investigate the effect of attached flange to outlet diffuser with various flange’s angle (0°, 10°, 20°, 30°) on the wind velocity characteristics. Numerical studies were conducted using the Computational Fluid Dynamics (CFD) method. The studies demonstrate that the curved diffuser with flange 10° generates the strongest increment of the wind velocity compared to the other configurations. The maximum velocity inside the diffuser increases up to 115.14%. It is found that the wind velocity at the diffuser centreline is not capable to represent the overall velocity of each section. The curved diffuser with flange 10° shows the highest increment of the average wind velocity along diffuser with the greatest increment of 102.4 % at x/L = 0.36, and the highest increment wind velocity at the diffuser centreline section at x/L = 0.18 is 115.14%.
PL
Energia wiatrowa stała się najpopularniejszą elektrownią wykorzystującą odnawialne źródła energii w ciągu ostatnich dziesięcioleci ze względu na zaciemnione środowisko i dużą naturalną dostępność. Chociaż nowoczesne turbiny wiatrowe są z powodzeniem instalowane na całym świecie, niektóre obszary o niskiej prędkości wiatru mogą wymagać specjalnej innowacji w celu zwiększenia ilości konwersji wydobytej energii wiatru na energię elektryczną. Jedną z popularnych technik dla turbin wiatrowych o niskiej prędkości jest turbina wiatrowa z dyfuzorem (DAWT), która jest od czasu do czasu rozwijana, na przykład przy użyciu symulacji numerycznej jako wczesnych etapów przed produkcją. W artykule przeprowadzono symulacje numeryczne w celu zbadania wpływu przymocowanego kołnierza na charakterystykę prędkości wiatru. Przeprowadzono symulacje numeryczne pola przepływu wokół różnych konstrukcji typu kołnierzowego dyfuzora, aby poprawić wydajność DAWT. Obecne badania w szczególności badają wpływ zamocowania kołnierza do dyfuzora wylotowego o różnym kącie kołnierza (0°, 10°, 20°, 30°) na charakterystykę prędkości wiatru. Badania numeryczne przeprowadzono metodą obliczeniowej dynamiki płynów (CFD). Z przeprowadzonych badań wynika, że zakrzywiony dyfuzor z kołnierzem 10° generuje najsilniejszy przyrost prędkości wiatru w porównaniu z innymi konfiguracjami. Maksymalna prędkość wewnątrz dyfuzora wzrasta do 115,14%. Stwierdzono, że prędkość wiatru w osi dyfuzora nie jest w stanie przedstawić całkowitej prędkości każdej sekcji. Zakrzywiony dyfuzor z kołnierzem 10° wykazuje największy przyrost średniej prędkości wiatru wzdłuż dyfuzora z największym przyrostem 102,4% przy x/L = 0,36, a największy przyrost prędkości wiatru w środkowej części nawiewnika przy x/L = 0,18 to 115,14%.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.