Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote The role of the matrix in SiC reinforced composites
EN
This article presents a comparison of the properties of composites based on aluminum or aluminum alloy (Al4Cu) rein- forced with silicon carbide SiCp. The main objective was to analyze the possibility of producing an Al + Cu alloy matrix by basic powder metallurgy methods and its influence on the final properties of the composite. The composites were produced by pressing and sintering, basic powder metallurgy techniques, in order to reduce the manufacturing costs. Sintering was carried out in nitrogen due to the favorable effect of this atmosphere on the sintering of aluminum-based materials. Silicon carbide SiC was used as the reinforcing phase. The study clearly showed that the use of a matrix made of a mixture of Al and Cu powders results in an almost twofold increase in hardness (from 32 to about 60 HB) and a more than twofold increase in flexural strength (from about 200 to more than 450 MPa). Observations of the microstructure confirmed the diffusion of copper into the aluminum and the facets of the Al2Cu phase.
EN
The paper presents the results of a study on the microstructure and hardness measurements of Al4Cu-xSiC (x = 5, 10, 20 and 30 wt.%) composites produced by spark plasma sintering (SPS). The sintering process was carried out in an HP D 25/3 plasma sintering furnace in a vacuum atmosphere, with sintering temperatures of 580 and 600°C and a densification pressure of 50 MPa. The heating rate was 100°C/min and the isothermal holding time at the sintering temperature was 2.5 min. As a reference material, the AlCu matrix was sintered under the same conditions. As a result, composites with a near-full density of 96.5-99.5% were obtained. Microstructure studies were performed employing the techniques of light microscopy, scanning, and transmission electron microscopy, along with analysis of the chemical composition in microareas. The test results did not reveal remarkable differences in the microstructure of the investigated composites sintered at 580 and 600°C. The sinters have a fine-grained microstructure with a strengthening phase located at the grain boundaries; locally, pores are visible. Increasing the SiC content in the composites promotes the formation of agglomerates of these particles. It was proven that a higher sintering temperature has a positive effect on the hardness of the studied composites.
EN
The article presents the results of the microstructure and tribological properties of Al-xSiC composites (x =70 and 90 wt% SiC) produced in spark plasma sintering (SPS). Due to their attractive thermal, physical, and mechanical properties, aluminum matrix composites with high-volume fractions of silicon carbide (> 50%) have become a major area of interest as a potential material for multifunctional electronic packaging and cryogenic applications. The SPS process was carried out in a vacuum atmosphere under various conditions. Composites with a density close to theoretical (96-98%) were obtained. X-ray diffraction and scanning electron microscopy with EDS analysis were used to characterize the microstructure. Mechanical properties were determined by hardness measurements and a three-point bending test. The tribological properties of the composites were determined utilizing a block-on-ring tribotester. As a criterion for wear resistance, weight loss measured under specific friction conditions, that is, depending on the type of material and the applied load, was adopted. The researched materials were characterized by an even distribution of the carbide phase in the matrix. Composites with the highest SiC phase content (90 wt%) had higher hardness (2537 HV1) and flexural strength (242} 15 MPa) with worse wear resistance at the same time. The weight loss of this composite was 0.43 and 0.76% for friction under loads of 100 and 200 N, respectively, and was 360 and 270% higher than that determined for the composites with the lower content of the SiC phase (70 wt%). The wear rate was three times higher for the Al-90wt%SiC composites.
EN
The paper presents the results of experimental investigations of the heat generation and microstructure evolution during the friction stir processing (FSP) of the SnSb11Cu6 alloy. The Triflute tool was used for modification; the process was carried out using two rotational speeds of the tool: 280 and 560 RPM and a constant linear speed of 355 mm/min. Microstructure studies were performed employing the techniques of light microscopy and scanning electron microscopy along with analysis of the chemical composition of micro-areas. Additionally, the phase composition was investigated by means of the X-ray diffraction method, and electron backscatter diffraction (EBSD) analysis and hardness testing were performed before and after FSP modification. Furthermore, measurements of the temperature directly on the modified surface by means of a thermal imaging camera and the temperature in the modified zone with a thermocouple system were performed. It was proved that using FSP to modify the SnSbCu alloy promotes refinement and homogenization of the microstructure, as well as improvement of the hardness. The hardness of the starting material was 24 HB, and after FSP, the hardness increased and amounted to, respectively, 25 and 27 HB after processing at 280 and 560 RPM. The microstructure in the stir zone is formed by the dynamic recrystallization (DRX) process and consists of almost equiaxed tin-rich matrix grains with a size of approx. 5–30 µm and fine particles of Cu6Sn5 and SnSb phases. The temperature distribution in the FSP zone is not uniform and changes in a gradient manner.
PL
W pracy przedstawiono wyniki badań wpływu temperatury spiekania w zakresie 900–1000°C na mikrostrukturę i wybrane właściwości kompozytów na osnowie stali szybkotnącej M3/2 z 50% dodatkiem wagowym żelaza wytworzonych metodą spiekania iskrowo-plazmowego. Proszek stali szybkotnącej gatunku M3/2 oraz proszek żelaza gatunku NC 100.24 mieszano w mieszalniku Turbula T2F. Przygotowane mieszaniny proszków spiekano z wykorzystaniem urządzenia HP D 25–3. W efekcie spiekania metodą SPS uzyskano kompozyty M3/2–Fe. W mikrostrukturze tych kompozytów występują zarówno ziarna żelaza, jak i ziarna stali szybkotnącej z charakterystycznymi wydzieleniami węglików typu MC i M6C. Osnowa stali szybkotnącej to prawdopodobnie ferryt i bainit. W mikrostrukturze widoczne są także małe pory, w miarę równomiernie rozmieszczone, co świadczy o tym, że temperatura spiekania wynosząca 1000°C jest nieznacznie niższa od optymalnej temperatury spiekania kompozytów M3/2–Fe metodą SPS. Na podstawie wykonanych pomiarów gęstości wykazano, że gęstość względna uzyskanych kompozytów wynosi od 92 do 98% i wzrasta wraz ze wzrostem temperatury spiekania. Ponadto wykazano, że od gęstości względnej zależy twardość oraz wytrzymałość na zginanie. Wraz ze zwiększeniem gęstości względnej od 92 do 98%, uzyskano wzrost twardości od 237 do 367 HBW 2,5/187,5 oraz wytrzymałości na zginanie od 956 do 1107 MPa. Najlepszą relacją gęstość–twardość–wytrzymałość na zginanie odznacza się kompozyt M3/2–Fe uzyskany w temperaturze 1000°C, którego gęstość względna wynosi 98%, twardość wynosi 367 HBW 2,5/187,5, a wytrzymałość na zginanie wynosi 1107 MPa.
EN
The paper presents the results of investigations on the influence of sintering temperature in the range of 900–1000°C on the microstructure and selected properties of composites on an M3/2 high speed steel matrix with a 50 wt% addition of iron produced by spark plasma sintering. M3/2 high speed steel powder and NC 100.24 iron powder were mixed in a Turbula T2F shaker/mixer. The prepared powder mixtures were sintered using an HP D 25–3 furnace. As a result of spark plasma sintering, M3/2–Fe composites were obtained. The microstructure of these composites includes both iron grains and high speed steel grains with characteristic precipitates of MC and M6C carbides. The high speed steel matrix is probably ferrite and bainite. Small evenly spaced pores are also visible in the microstructure, which indicates that the sintering temperature of 1000°C is slightly lower than the optimal sintering temperature of M3/2–Fe composites using the spark plasma sintering. Based on the performed density measurements, it was shown that the relative density of the ob-tained composites is from 92 to 98% and grows with increasing the sintering temperature. In addition, it was shown that the relative hardness and bending strength depend on the relative density. Together with the rise in the relative density from 92 to 98%, increases in the hardness from 237 to 367 HBW 2.5/187.5 and the bending strength from 956 to 1107 MPa were obtained. The M3/2–Fe composite obtained at the temperature of 1000°C is characterized by the best density–hardness–bending strength relation, which amounts a relative density of 98%, hardness of 367 HB 2.5/187.5, and bending strength of 1107 MPa.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.