Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Solasodine, a steroidal alkaloid, is distributed extensively in Solanaceae plants with multiple biological activities such as neuroprotection, antineoplastic and anticonvulsant activities. However, there is little information about the excretion of intact solasodine in vivo. To investigate its excretion, a reliable LC-MS/MS method for quantitation solasodine in rat urine and feces was established and validated. Sample preparation was carried out by liquid-liquid extraction using MTBE as extractant. Moreover, rat urine was preconditioned with BSA, an anti-adsorptive additive, to prevent the nonspecific binding of solasodine to containers and tubes. The method was validated over the range of 4–2000 ng mL⁻¹. The correlation coefficient (r2t) were all above 0.999. The intra- and inter-day precision and accuracy were within 16.9% and between −11.0 and 8.9%, respectively. The recovery of solasodine in urine and feces was in the range of 72.5–80.3 and 75.7–80.2%, respectively. IS-normalized matrix factor ranged from 0.94 to 1.12 with RSD% ≤4.02%. This method was successfully applied to the excretion study of solasodine following oral and intravenous administration.
EN
Synthesized dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate (TKX-50) owes its outstanding application prospects in the field of insensitive solid propellants not only to its high energetic performance but also to its low mechanical sensitivity. Based on the excellent catalytic activity of bimetallic iron oxides for the thermal decomposition of TKX-50, the catalytic mechanism of bimetallic iron oxides (NiFe2O4, ZnFe2O4 and CoFe2O4) for TKX-50 pyrolysis has been explored. For this study, the decomposition process of TKX-50, before and after mixing with the bimetallic iron oxides NiFe2O4, ZnFe2O4 and CoFe2O4 was monitored by in-situ FTIR and gas-phase MS-FTIR instruments. Of the different catalysts, ZnFe2O4 gave the best result for reducing the initial decomposition temperature of TKX-50. Additionally, the activation energy of functional group cleavage of TKX-50, before and after mixing with ZnFe2O4, was also calculated for mechanism analysis from the results of the in-situ FTIR measurements. The results showed that the condensate and the gas-phase decomposition products of TKX-50 remained unchanged after mixing with different catalysts, while the activation energy of tetrazole ring cleavage was significantly reduced. The results of this study will be helpful for the rational design of insensitive solid propellant formulations containing TKX-50, and for understanding the pyrolysis mechanisms of TKX-50 before and after mixing with the efficient catalyst ZnFe2O4.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.