This paper studies the robust finite-time H∞ state feedback control problem of continuous-time Markov jump systems (MJSs) subject to norm bounded uncertainties. Transition probabilities are allowed to be known, uncertain with known bounds or unknown. Based on the continuous transition probability property and the developed slack variable technique, Lyapunov variables are separatek from unknown transition probabilities and system matrices. With these separations, a relaxed method for robust finite-time H∞ controller design is proposed in terms of linear matrix inequalities (LMIs). Numerical examples are given to illustrate the effectiveness of and the benefit from the proposed method.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Objective: This study was designed to evaluate the biocompatibility and osteointegrative activity of hydroxyapatite (HA)-CaTiO3, titanium substrate, traditional HA coating and CaTiO3 coating via an animal experiment. Method: Four types of screws (type 1: coated with HA; type 2: coated with CaTiO3; type 3: coated with HA-CaTiO3; type 4: untreated titanium screws) were implanted into femur bone of 48 New Zealand rabbits. Histological and mechanical investigations were employed at the end of 2, 4, 8 and 12 weeks to evaluate the material osteointegration. Results: (1) All of the experimental rabbits were healthy during the experiment process. (2) Histological investigation showed fully regenerated and well integrated bone tissue surrounding the screws coated with HA, HA-CaTiO3 and CaTiO3. (3) Mechanical investigation showed that the bonding strength of HA-CaTiO3 coating was significantly higher than that of CaTiO3 coating or titanium materials without coating, but was lower than those coated with HA. Conclusion: HA-CaTiO3 coating possesses similar admirable biocompatibility and osteointegration activity with HA coating, indicating a promising coating material for implants in orthopedics.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.