Purpose: The study presents the numerical study to investigate the bearing capacity of the rectangular footing on layered sand (dense over loose) using ABAQUS software. Design/methodology/approach: Finite element analysis was used in this study to investigate the bearing capacity of the rectangular footing on layered sand and subjected to inclined load. The layered sand was having an upper layer of dense sand of varied thickness (0.25 W to 2.0 W) and lower layer was considered as loose sand of infinite thickness. The various parameters varied were friction angle of the upper dense (41° to 46°) and lower loose (31° to 36°) layer of sand and load inclination (0° to 45°), where W is the width of the rectangular footing. Findings: As the thickness ratio increased from 0.00 to 2.00, the bearing capacity increased with each load inclination. The highest and lowest bearing capacity was observed at a thickness ratio of 2.00 and 0.00 respectively. The bearing capacity decreased as the load inclination increased from 0° to 45°. The displacement contour shifted toward the centre of the footing and back toward the application of the load as the thickness ratio increased from 0.25 to 1.25 and 1.50 to 2.00, respectively. When the load inclination was increased from 0° to 30°, the bearing capacity was reduced by 54.12 % to 86.96%, and when the load inclination was 45°, the bearing capacity was reduced by 80.95 % to 95.39 %. The results of dimensionless bearing capacity compare favorably with literature with an average deviation of 13.84 %. As the load inclination was changed from 0° to 45°, the displacement contours and failure pattern shifted in the direction of load application, and the depth of influence of the displacement contours and failure pattern below the footing decreased, with the highest and lowest influence observed along the depth corresponding to 0° and 45°, respectively. The vertical settlement underneath the footing decreased as the load inclination increased, and at 45°, the vertical settlement was at its lowest. As the load inclination increased from 0° to 45°, the minimum and maximum extent of influence in the depth of the upper dense sand layer decreased, with the least and highest extent of influence in the range of 0.50 to 0.50 and 1.75 to 2.00 times the width of the rectangular footing, respectively, corresponding to a load inclination of 45° and 0°. Research limitations/implications: The results presented in this paper were based on the numerical study conducted on rectangular footing having length to width ratio of 1.5 and subjected to inclined load. However, further validation of the results presented in this paper, is recommended using experimental study conducted on similar size of rectangular footing. engineers designing rectangular footings subjected to inclined load and resting on layered (dense over loose) sand. Originality/value: No numerical study of the bearing capacity of the rectangular footing under inclined loading, especially on layered soil (dense sand over loose sand) as well as the effect of the thickness ratio and depth of the upper sand layer on displacement contours and failure pattern, has been published. Hence, an attempt was made in this article to investigate the same.
Purpose: The purpose of this study is to investigate the ultimate bearing capacity of the rectangular footing resting over layered sand using finite element method. Design/methodology/approach: Finite element analysis was used to investigate the dimensionless ultimate bearing capacity of the rectangular footing resting on a limited thickness of upper dense sand layer overlying limitless thickness of lower loose sand layer. The friction angle of the upper dense sand layer was varied from 41° to 46° whereas for the lower loose sand layer it was varied from 31° to 36°. Findings: The results reveal that the dimensionless ultimate bearing capacity was found to increase up to an H/W ratio of about 1.75 beyond which the increase was marginal. The results further reveal that the dimensionless ultimate bearing capacity was the maximum for the upper dense and lower loose sand friction angles of 46° and 36°, while it was the lowest for the upper dense and lower loose sands corresponding to the friction angle of 41° and 31°. For H/W = 0.5 and 2, the dimensionless bearing capacity decreases with the increase in the L/W ratio from 0.5 to 6 beyond which the dimensionless ultimate bearing capacity remains constant for all combinations of parameters. The results were presented in nondimensional manner and compared with the previous studies available in literature. Research limitations/implications: The analysis is performed using a ABAQUS 2017 software. The limitation of this study is that only finite element analysis is performed without conducting any experiments in the laboratory. Further the study is conducted only for the vertical loading. Practical implications: This proposed numerical study can be used to predict the ultimate bearing capacity of the rectangular footing resting on layered sand. Originality/value: The present study gives idea about the ultimate bearing capacity of rectangular footing when placed on layered sand (dense sand over loose sand) as well as the effect of thickness of top dense sand layer on the ultimate bearing capacity. The findings could be used to calculate the ultimate bearing capacity of the rectangular footing on layered sand.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.