Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The in situ remote sensing reflectance (Rrs) and optically active substances (OAS) measured using hyperspectral radiometer, were used for optical classification of coastal waters in the southeastern Arabian Sea. The spectral Rrs showed three distinct water types, that were associated with the variability in OAS such as chlorophyll-a (chl-a), chromophoric dissolved organic matter (CDOM) and volume scattering function at 650 nm (β650). The water types were classified as Type-I, Type-II and Type-III respectively for the three Rrs spectra. The Type-I waters showed the peak Rrs in the blue band (470 nm), whereas in the case of Type-II and III waters the peak Rrs was at 560 and 570 nm respectively. The shifting of the peak Rrs at the longer wavelength was due to an increase in concentration of OAS. Further, we evaluated six bio-optical algorithms (OC3C, OC4O, OC4, OC4E, OC3M and OC4O2) used operationally to retrieve chl-a from Coastal Zone Colour Scanner (CZCS), Ocean Colour Temperature Scanner (OCTS), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), MEdium Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer (MODIS) and Ocean Colour Monitor (OCM2). For chl-a concentration greater than 1.0 mg m−3, algorithms based on the reference band ratios 488/510/520 nm to 547/550/555/560/565 nm have to be considered. The assessment of algorithms showed better performance of OC3M and OC4. All the algorithms exhibited better performance in Type-I waters. However, the performance was poor in Type-II and Type-III waters which could be attributed to the significant co-variance of chl-a with CDOM.
EN
Phytoplankton modify the optical properties of the seawater by altering the subsurface light field. Information on the accessory pigments present in the phytoplankton helps to differentiate major phytoplankton classes or taxonomic groups. The variability in the absorption spectra of phytoplankton and particulate matter of case 2 coastal waters of the Southeastern Arabian Sea were studied from June 2010 to November 2011. The phytoplankton specific absorption coefficient, at 440 nm and 675 nm, a*ph (440) and a*ph (675) varied from 0.018 to 0.32 m2 mg-1 and from 0.0005 to 0.16 m2 mg-1, respectively. The 4th derivative spectra computed for each in vivo absorption spectrum showed that the amplitude of maxima obtained is proportional to the concentration of the chromoprotein which absorbed that wavelength. Regression of pigment concentration against the 4th derivative spectral coefficient showed that the measurements of particulate absorption could provide quantitative information on chlorophyll a and other accessory pigment concentrations. Fucoxanthin and diadinoxanthin, the carotenoid pigments found in the diatoms were identified from the derivatives peaks. The study demonstrates the utility of using the 4th derivative analysis as a tool to identify the dominating phytoplankton group and its pigment composition.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.