Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Injury Risk in Behind Armor Blunt Thoracic Trauma
EN
First responders and military personnel are particularly susceptible to behind armor blunt thoracic trauma in occupational scenarios. The objective of this study was to develop an armored thorax injury risk criterion for short duration ballistic impacts. 9 cadavers and 2 anthropomorphic test dummies (AUSMAN and NIJ 0101.04 surrogate) were tested over a range of velocities encompassing low severity impacts, medium severity impacts, and high severity impacts based upon risk of sternal fracture. Thoracic injuries ranged from minor skin abrasions (abbreviated injury scale [AIS] 1) to severe sternal fractures (AIS 3+) and were well correlated with impact velocity and bone mineral density. 8 male cadavers were used in the injury risk criterion development. A 50% risk of AIS 3+ injury corresponded to a peak impact force of 24,900 ± 1,400 N. The AUSMAN impact force correlated strongly with impact velocity. Recommendations to improve the biofidelity of the AUSMAN include implementing more realistic viscera and decreasing the skin thickness.
EN
To reduce human casualties associated with explosive ordnance disposal, a wide range of protective wear has been designed to shield against the blast effects of improvised explosive devices and munitions. In this study, 4 commercially available bomb suits, representing a range of materials and armor masses, were evaluated against 0.227 and 0.567 kg of spherical C-4 explosives to determine the level of protection offered to the head, neck, and thorax. A Hybrid III dummy, an instrumented human surrogate [1], was tested with and without protection from the 4 commercially available bomb suits. 20 tests with the dummy torso mounted to simulate a kneeling position were performed to confirm repeatability and robustness of the dummies, as well as to evaluate the 4 suits. Correlations between injury risk assessments based on past human or animal injury model data and various parameters such as bomb suit mass, projected area, and dummy coverage area were drawn.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.