Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study demonstrates the comparison in the method of fabrication and thus evaluates the potential of psyllium husk powder and gelatin-based composite microporous scaffolds for tissue engineering applications. The scaffold is being prepared in three different ratios of 50:50, 75:25 and 100 (w/w of psyllium husk powder and gelatin, respectively) by employing a suitable cross-linking agent, EDC-NHS, followed drying. We have demonstrated the use and outcomes of two different methods of scaffold drying, i.e., vacuum desiccation along with liquid nitrogen dip and lyophilization. It was concluded from the SEM micrographs that the scaffolds dried under vacuum accompanied with liquid nitrogen exposure exhibited less porous architecture when compared to those prepared using a lyophilizer, that resulted in pores in the range of 60-110 μm. Scaffolds fabricated using the former technique lost porosity and sponge-like characteristics of a scaffold. In spite of the above fact, water retaining capacity and stability in the cell culture of such scaffolds is significant, nearly 40-50% of its initial dry weight. Cell culture experiments support the potential of the scaffolds prepared from different methods of fabrication for its cytocompatibility and suitability for cell growth and proliferation for a substantial duration. Erosion in the porous design of the scaffolds was observed after 14 days via SEM micrographs. It was inferred that freeze-drying is a better technique than vacuum desiccation for scaffold preparation. The present investigation has been conducted keeping in mind the importance of drying a scaffold. Scaffold drying is a necessary step to increase its shelf-life, makes it easy to transport and much importantly, controlling the pore size of the scaffold.
EN
In vitro tissue model systems have attracted considerable attention in drug discovery owing to their ability to facilitate identification of promising compounds in the near-physiological environment during drug development. Additive manufacturing helps in mimicking com-plex geometries including the microarchitecture of the body tissues. Exploiting this emerg-ing technology, the present study demonstrates a simple and inexpensive approach for the fabrication of three-dimensional (3D) in vitro tissue models using a custom-designed automated bioprinting system. The bioink mixture comprised of a novel optimized compo-sition of widely known biomaterials including gelatin, alginate and hydrolyzed type-1 collagen to embed and print the C2C12 myoblast cells. The structural stability and integrity of the cells-laden constructs were found to be significantly consistent for more than 14 days in culture. Rheological and mechanical properties of the bioink blend were characterized to assess its efficacy for the fabrication of cells-laden tissue constructs. Scanning electron micrographs were acquired to analyze porosity of the scaffold for cellular growth and proliferation. The viability of cells embedded within the hydrogel was >80%, 3 h post-printing. We anticipate that the fabricated tissues will serve as an alternative model for in vitro toxicological and drug response studies.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.