Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In recent years, optical neural networks have attracted widespread attention, due to their advantages of high speed, high parallelism, high bandwidth, and low power consumption. Photonic unitary neural network is a kind of neural networks that utilize the principles of unitary matrices and photonics to perform computations. In this paper, we design a photonic unitary neural network based on Mach–Zehnder interferometer arrays. The results show that the network has a good performance on both triangular and circular binary classification datasets, where most of the data points are correctly classified. The accuracies achieve 97% and 95% for triangular and circular datasets, with the loss function values of 0.023 and 0.046, respectively.
EN
In recent years, with the expansion of information, artificial intelligence technology has been developed and used in various fields. Among them, optical neural network provides a new type of special neural network accelerator chip solution, which has the advantages of high speed, high bandwidth, and low power consumption. In this paper, we construct an optical neural network based on Mach–Zehnder interferometer. The experimental results on the image classification of MNIST handwritten digitals show that the optical neural network has high accuracy, fast convergence and good scalability.
EN
Optical neural network (ONN) has been regarded as one of the most prospective techniques in the future, due to its high-speed and low power cost. However, the realization of optical convolutional neural network (CNN) in non-ideal cases still remains a big challenge. In this paper, we propose an optical convolutional networks system for classification problems by applying general matrix multiply (GEMM) technology. The results show that under the influence of noise, this system still has good performance with low TOP-1 and TOP-5 error rates of 44.26% and 14.51% for ImageNet. We also propose a quantization model of CNN. The noise quantization model reaches a sufficient prediction accuracy of about 96% for MNIST handwritten dataset.
EN
The paper described the experimental findings of underwater wet welding of E40 steel using self-shielded flux-cored wire with a TiO2 -FeO-MnO slag system. The arc stability, weld quality and corrosion resistance with different heat inputs were studied. The results showed that the wet welding process of the designed wire displayed good operability in the range of investigated parameters. The microstructure and mechanical properties of the weld metal depended on the heat input. Due to the high fraction of acicular ferrite in the weld metal, the mechanical properties of the weld metal under low heat input had better tensile strength and impact toughness. Fracture morphologies at low heat input had uniform and small dimples, which exhibited a ductile characteristic. The diffusible hydrogen content in the deposited metal obtained at a heat input of 26 kJ/cm significantly reduced to 14.6 ml/100g due to the combined effects of Fe2 O3 addition and the slow solidification rate of molten metal. The microstructure also had a significant effect on the corrosion resistance of the weld metal. The weld metal with high proportions of acicular ferrite at low heat input exhibited the lowest corrosion rate, while the base metal possessed a reduced corrosion resistance. These results were helpful to promote the application of low alloy high strength steel in the marine fields.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.