Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The study examines the effect of the annealing on the microstructure, tensile strength (small flat dog-bone specimen size with 5 mm dimension of measuring base) and corrosion resistance of IN 625 nickel superalloy specimens manufactured by means of selective laser melting method (SLM). The annealing of such specimens was carried out in a chamber furnace in a protective atmosphere of argon at a temperature of 1038 °C for 1 h. The cooling process was carried out in an atmosphere of air at ambient temperature. The microstructure of the IN 625 nickel superalloy after the 3D printing process and after the post-process heat treatment (HT) was examined by means of scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The results showed a uniform microstructure after the SLM process with element microsegregation. The cooling rate in the heat treatment was not sufficient which caused precipitation at the grain boundaries, most probably carbides and resulted in only a partial increase in ductility much lower than that of the material in initial state despite the high temperature applied during the annealing. The strength in the HT was on a level comparable to as-build state, 852 MPa and 891 MPa, respectively. Additional corrosion resistance tests were performed by the potentiodynamic method in a 3.5% NaCl solution at room temperature. HT increased the current density variation from ipass due to the formed precipitates. Our studies show that the size effect is an important factor when assessing the properties of IN 625 obtained using SLM. Despite similar microstructure, the structure defects play a more significant role which translates into lower mechanical properties than in normal sized specimens defined by the standard ASTM E8.
EN
In the current research the hydrostatic extrusion (as one of the most common method of grain refinement) of the commercial 1.4462 duplex stainless steel was carried out using several reduction stages leading to a cumulative deformation strain ɛ = 1.4, and then ɛ = 3.8. The extrusion process has led to a change of microstructure and texture of the investigated material as was expected. Moreover, these changes were accompanied by improvements in mechanical properties measured by the nanohardness. The aim of this research was the characterization of the texture, residual stress and mechanical properties after subsequent stages of deformation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.