The study is devoted to the explanation of the influence of hot plastic deformation on the properties of railway wheels. The shape of individual elements of the wheel provides for a different degree of hot compression, which determines the mechanism for the development of the recrystallization at austenite. With a decrease in the degree of the hot deformation, a certain proportion of grains with a low energy of linear stretching are formed in austenite. As a result, of the low mobility of such boundaries, the likelihood of preservation of part of the substructural state of the austenite increases, which should affect the formation of a colony of perlite during the cooling of the carbon steel. Against background preservation and a dependence of strength properties on the dispersion of the pearlite colony, the appearance in austenite of grain boundaries with a low energy of linear tension leads to a qualitative change in the plastic properties of railway wheel steel. The increase in plasticity of carbon steel with an increase in dispersion of the pearlite colony is due to a decrease in the effect of solid solution hardening and an increase in the role of the ferrite-cementite interface in the development processes of strain hardening carbon steel. The results obtained can be useful for improving the technology of manufacturing all-rolled railway wheels.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.