Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
Simulation training in medical education is a valuable tool for skill acquisition. Standard audio/ video-feedback systems for training surveillance and subsequent video feedback are expensive and often not available. Methods: We investigated solutions for a low-budget audio/video-feedback system based on consumer hardware and open source software. Results: Our results indicate that inexpensive, movable network cameras are suitable for high-quality video transmission including bidirectional audio transmission and an integrated streaming platform. In combination with a laptop, a WLAN connection, and the open source software iSpyServer, one or more cameras represent the easiest, yet fully functional audio/video-feedback system. For streaming purposes, the open source software VLC media player yields a comprehensive functionality. Using the powerful VideoLAN Media Manager, it is possible to generate a splitscreen video comprising different video and audio streams. Optionally, this system can be augmented by analog audio hardware. In this paper, we present how these different modules can be set up and combined to provide an audio/ video-feedback system for a simulation ambulance. Conclusions: We conclude that open source software and consumer hardware offer the opportunity to build a low-budget, feature-rich and high-quality audio/videofeedback system that can be used in realistic medical simulations.
2
EN
We consider a linear damped wave equation defined on a two-dimensional domain [...], with a dissipative term localized in a subset [...]. We address the shape design problem which consists in optimizing the shape of [...] in order to minimize the energy of the system at a given time T. By introducing an adjoint problem, we first obtain explicitly the (shape) derivative of the energy at time T with respect to the variation in [...]. Expressed as a boundary integral on [...], this derivative is then used as an advection velocity in a Hamilton-Jacobi equation for shape changes. We use the level-set methodology on a fixed working Eulerian mesh as well as the notion of the topological derivative. We also consider optimization with respect to the value of the damping parameter. The numerical approximation is presented in detail and several numerical experiments are performed which relate the over-damping phenomenon to the well-posedness of the problem.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.