Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this globalized era, building materials play an essential role in the civil engineering field. Nowadays, with the increase in population, the demand for construction activities is also increasing. Polyethylene (PET) bottles are among the most widely used materials and cause an abundance of non-degradable waste, at about 0.94 million tonnes in Malaysia. One of the alternatives to reduce this waste's environmental impact is to incorporate it inside building materials such as brick and concrete. As PET bottles' recycling is highly promoted, the physical and mechanical properties of building materials made from PET bottles have also been reviewed. The data analysis shows that the compressive strength, flexural strength, split tensile strength and density of building materials decreases as the percentage of PET waste increases. However, other properties such as water absorption, initial absorption rate, and firing shrinkage increase proportionally with the PET waste. Besides, heavy metals in these building materials comply with the United States Environmental Protection Agency (USEPA) standards. It can be concluded that the percentage of PET waste incorporated into brick and concrete must be less than 5% and 2%, respectively, to produce suitable materials to provide alternatives in reducing and recycling PET waste.
EN
This paper discussed the treatment of Malaysian petroleum sludge by incorporating palm oil fuel ash (POFA) to replace Portland cement and quarry dust (QD) replaces sand in the solidification/stabilization (S/S) method. Preliminary studies, including chemical composition, heavy metal characterization, density test, compressive strength test, and toxicity characteristic leaching procedure (TCLP), were done to evaluate POFA and QD suitability in S/S matrices. The 10% replacement of POFA recorded a considerable density value ranging from 1500 kg/m3 to 1660 kg/m3. As for S/S matrices containing petroleum sludge, the results indicate the possibility to of encapsulating the sludge in the matrices up to 10%. The highest strength of S/S matrices with petroleum is from PS5% samples with 15.61 MPa at 28 days. The toxicity characteristic of heavy metals from the S/S matrices was below the permissible limit set by USEPA. This investigation could be an alternative solution for petroleum sludge, POFA, and QD disposal and has excellent potential for replacing other treatment approaches employed at the advanced treatment stage for petroleum refinery effluents.
EN
The disposal of industrial steel mill sludge in landfills has frequently received significant concern as the sludge has a very notable potential to contaminate soil surface and groundwater in the long run. Recently, the incorporation of industrial steel mill sludge into fired clay brick has become one of the promising alternative methods as it could produce a lightweight product while minimizing the environmental impact of the waste used. In this study, fired clay bricks as the most common building material were incorporated with 0%, 5%, 10% and 15% of steel mill sludge and fired at 1050°C (heating rate of 1°C/min). The manufactured bricks were subjected to physical and mechanical properties such as firing shrinkage, dry density, and compressive strength while the Toxicity Characteristic Leaching Procedure (TCLP) was conducted to analyze leaching behavior from the manufactured bricks. The results demonstrated that incorporation up to 15% of steel mill sludge reduces the properties up to 27.3% of firing shrinkage, 8.1% of dry density and 67.3% of compressive strength. The leaching behavior of Zn and Cu from steel mill sludge was reduced up to 100% from 7414 to 9.22 ppm (Zn) and 16436 to 4.654 ppm (Cu) after 15% of sludge incorporation. It was observed that high temperature during the firing process would improve the properties of bricks while immobilizing the heavy metals from the waste. Therefore, recycling steel mill sludge into construction building materials could not only alleviate the disposal problems but also promote alternative new raw materials in building industries.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.