The purpose of this paper is to investigate the effect of temperature change on the Lamb wave-based SHM method. This study evaluates the Lamb wave method’s ability to detect damage to an AL2024-T3 sheet, assessed by a near-surface hole. Lamb waves are created via numerical simulation with the commercial Finite Element (FE) package ABAQUS. In this study, the Lamb wave-based SHM method using displacement responses is used. The results indicate that this method is able to detect a near-surface hole in the AL2024-T3 sheet as well as its location, with close approximation. Subsequently, the AL1100 sheet was investigated for changes in temperature from this method, which was evaluated over a temperature range of –200°C to 204°C. The results show that temperature change in the range of –200°C to 93°C has no effect on the displacement responses. However, the graphs related to temperature change of more than 149°C do not overlap with the reference temperature. Hence, it has been concluded that Lamb waves can be used as an SHM method in the temperature range of –200°C to 93°C without having to worry about the effects of temperature change on the results.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.