Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Non-uniform conditions on the modules of the PV array, especially, partial shading reduces the output of the PV array to a large extent. The shaded module in a string limits the current of the entire string and hence, the output power of the string. The output power under such conditions is reported to be higher for total-cross-tied (TCT) configuration. This paper describes two different approaches, one based on current compensation (current equalization) and another based on voltage equalization, to extract higher power from the partially shaded total-cross-tied photovoltaic array. The TCT configuration is considered to minimize the number of converters, sensors, cost and complexity involved. The additional converters in the two distinct approaches evaluated here operate only when the partial shading occurs and are controlled to minimize the current and voltage miss-matches. The analysis and the control algorithm are presented. Simulation results obtained in MATLAB/Simulink are included to demonstrate the effectiveness of both methods and the relative merits and demerits of these approaches are highlighted.
EN
Proper synchronization of Distributed Generator with grid and its performance in grid-connected mode relies on fast and precise estimation of phase and amplitude of the fundamental component of grid voltage. However, the accuracy with which the frequency is estimated is dependent on the type of grid voltage abnormalities and structure of the phase-locked loop or frequency locked loop control schemes. Among various control schemes, second-order generalized integrator based frequency- locked loop (SOGI-FLL) is reported to have the most promising performance. It tracks the frequency of grid voltage accurately even when grid voltage is characterized by sag, swell, harmonics, imbalance, frequency variations etc. However, estimated frequency contains low frequency oscillations in case when sensed grid-voltage has a dc offset. This paper presents a modified dual second-order generalized integrator frequency-locked loop (MDSOGI-FLL) for three-phase systems to cope with the non-ideal three-phase grid voltages having all type of abnormalities including the dc offset. The complexity in control scheme is almost the same as the standard dual SOGI-FLL, but the performance is enhanced. Simulation results show that the proposed MDSOGI-FLL is effective under all abnormal grid voltage conditions. The results are validated experimentally to justify the superior performance of MDSOGI-FLL under adverse conditions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.