This contribution presents a numerical evaluation of the impact of parallelization on the performance of an evolutionary algorithm for mixed-integer nonlinear programming (MINLP). On a set of 200 MINLP benchmarks the performance of the MIDACO solver is assessed with gradually increasing parallelization factor from one to three hundred. The results demonstrate that the efficiency of the algorithm can be significantly improved by parallelized function evaluation. Furthermore, the results indicate that the scale-up behaviour on the efficiency resembles a linear nature, which implies that this approach will even be promising for very large parallelization factors. The presented research is especially relevant to CPU-time consuming real-world applications, where only a low number of serial processed function evaluation can be calculated in reasonable time.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.