Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article provides a comprehensive analysis of usingTNT-free explosives (E) in the iron ore mining sector in Ukraine. It delves into thedevelopment and application of a specific type of emulsion explosive known as "Ukrainit," which is free from TNT, with the objective of its adoption in underground iron ore mining operations. Pilot blasting activities were carried out at PJSC "ZaporizhzhiaIron Ore Plant" (PJSC "ZIOP"), selected for its state-of-the-art equipment and advanced ore extraction technology.Through examination of ground-level concentrations of environmentally hazardous substances, the study revealed that the highest levels of carbon monoxide, nitrogen oxide, and dioxide were observed in 2008 when underground mining operations exclusively used100% TNT-containing E. However, by the year 2020, a situation changedwith implementation of a blend comprising 78% "Ukrainit" type EE and 22% TNT-containing explosives, resulting in anotable decrease in the maximum concentrations of environmentally hazardous substances compared to 2008. Specifically, carbon monoxide leveldecreased by 5.0–5.5 times, while nitrogen oxide and dioxide levels decreased by 1.2–1.3 times.Furthermore, useof "Ukrainit" type EE at PJSC "ZIOP" led to a 1.5 times decrease in the environmental hazard index on average (reduced to 36%) compared to the usage of TNT-containing E. These findings underscore the significant environmental benefits associated with the adoption of TNT-free explosives in iron ore mining operations, particularly in mitigating the release of harmful substances and reducing environmental risks.
EN
Laboratory and industrial studies have established the total impact of environmentally hazardous substances, taking into account the distance from the source of emissions and the specific consumption of explosives. With the help of physicochemical analysis and biological testing, the dependence of the change in the conditional indicator of damage to bioindicators with an increase in the distance from the source of emission and the specific annual consumption of explosives was revealed. A methodology for calculating the environmental assessment of the state of atmospheric air around the mine ventilation shaft has been developed. The exponential dependence of the influence of surface concentrations of environmentally hazardous substances on the damage of bioindicators at the cellular and organismic levels has been established, which makes it possible to assess the state of atmospheric air at industrial sites of iron ore mines. The proposed technology of sand drilling, which involves the use of emulsion explosives in mining ore deposits in chamber development systems will reduce emissions of environmentally hazardous substances into the atmosphere and increase the level of environmental safety of iron ore mines.
EN
The calculation of economic efficiency during the preparatory mine operations using various mining equipment and types of explosives was performed. The general exponential regularity of determining the cost of carrying out 1 m3 of working depending on the strength of rocks to compression when using different types of explosives and tunneling equipment was established. An environmental assessment of the use of emulsion explosives in an iron ore mine showed a decrease in concentrations of environmentally hazardous substances and a decrease in environmental hazard coefficients, which resulted in a decrease in the pollution of the atmospheric air.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.