Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote First principles investigations of HgX (X=S, Se and Te)
EN
Purpose: The aim of this study is to determine the structural, and mechanical properties of Hg chalcogenide materials (HgX; X=S, Se, Te) in the zinc-blende structure which are presented as promising candidates for modern optoelectronic and spintronic applications. The dependence of elastic constants of pressure for three materials are evaluated. Moreover, isotropic mechanical properties such as bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio are obtained. Design/methodology/approach: First principles calculations based on Density Functional Theory are performed by employing Projector Augmented Waves potentials. The electronic exchange and correlation function is treated by using Generalized Gradient Approximation parametrized by Perdew, Burke and Ernzerhof (PBE96). Findings: Calculated results of structural and mechanical properties are in good agreement with those of experimental and other theoretical studies. This three materials in zinc-blende structure are mechanically stable. İsotropic mechanical properties are also obtained. Resistance against both linear strain and shear strain and ductility decrease as we go into the sequence of HgS−>HgSe−>HgTe. The wave velocities and Debye temperatures calculated for this materials. Debye temperatures are founded for HgS, HgSe and HgTe as 306.21 K, 264.30 K and 240.19 K, respectively Research limitations/implications: Calculation speeds of the computers and data storage are some limitations. Also, the lack of experimental data hinder for the comparison of our results. Practical implications: Obtaining high pressure elastic constants by calculations is preferable since it is very difficult or even impossible to measure them by experimentally. Originality/value: There are only restricted number of investigation of elastic constants of mercury chalcogenides both theoretically and experimentally.
2
Content available remote Structural and mechanical properties of ZnTe in the zincblende phase
EN
Purpose: The aim of this work investigate to the structural and mechanical properties of ZnTe in the B3 structure, using the ab initio method based on Density Functional Theory (DFT). Design/methodology/approach: The Vienna ab initio Simulation Package (VASP) has been used to perform the electronic structure calculations. The projector-augmented wave formalism (PAW) implemented in this package leads to very accurate result comparable to other all-electron methods. The electronic exchange and correlation functions are treated within DFT by using generalized gradient approximation. Findings: The lattice parameter, bulk modulus, it's pressure derivative and the elastic stiffness coefficients are calculated. Our results for the structural parameters and the elastic constants at the equilibrium phase are in good agreement with the available experimental and other theoretical studies. We have also investigated the pressure dependence of mechanical properties for ZnTe in the structure of B3 to see this effect. Research limitations/implications: These compounds are convenient for many technological applications because of they have direct energy band gaps and property of light emitters at room temperature. Practical implications: These compounds used to many technological applications, such as solid state laser devices, photovoltaic devices, solar cells, remote control systems, thin films, transistors, THz emitter, detector and imaging systems etc. Originality/value: In this work, determination of structural and mechanical properties of ZnTe in the B3 structure at high pressures will lead to new technological applications of these materials.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.