In this paper, we present the advantage of the ability of FPGAs to perform various computationally complex calculations using deep pipelining and parallelism. We propose an architecture that consists of many small stream processing blocks. The designed framework maintains proper data movement and synchronization. The architecture can be easily adapted to be implemented in FPGA devices of a various size and cost - from small SoC devices to high-end PCIe accelerator cards. It is capable to perform a selected operation on a sparse data that are loaded as the stream of vectors. As an example application, we have implemented the cosine similarity measure for the text similarity calculations that uses the TF-IDF weighting scheme. The presented example application calculates the similarity of texts from the set of input documents to documents from the large database. The scheme is used to find the most similar documents. The proposed design can decrease the service time of search queries in computer centers while reducing power consumption.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.