Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper presents the results of the investigation aimed at detailed characterisation of the changes occurring in the microstructure of cold rolled DP steel in the continuous annealing/galvanizing process. These changes include static recrystallization of ferrite and transformation of initial ferritic – pearlitic microstructure into ferrite and austenite during heating stage and reverse transformation of austenite into ferrite and next into martensite + bainte during cooling stage of the continuous annealing/galvanizing process. It was found that the static recrystallization of ferrite during heating starts at around 600°C whilst the transformation of ferrite + pearlite to austenite + ferrite starts at around 750°C. The kinetics of phase transformation during cooling depends on the peak temperature of the thermal profile. If this temperature is within two – phase range, no nucleation process is involved in ferrite nucleation and the transformation of austenite into ferrite begins almost instantaneously after start of cooling. On the contrary, nucleation process occurs when the cooling is applied from the temperature of austenite stability. This results in the undercooling of austenite with respect to the Ae3 temperature which depends on the cooling rate. Further transformation of remaining austenite into low temperature transformation products (bainite and martensite) is dependent on the hardenability of particular DP steel and cooling rates applied. However, in real industrial process, cooling conditions should be carefully controlled due to the limitations of galvanizing operation. This imposes limits on the cooling rates, and generally leads to the decomposition of austenite into martensite and bainite mixture instead of martensite alone. The physical simulation of continuous annealing using Gleeble 3800 simulator showed a strong dependence of the microstructure and mechanical properties of DP strips on peak temperature and soaking time as well as on tempering temperature and time.
PL
W artykule przedstawiono wyniki badań ukierunkowanych na scharakteryzowanie zmian zachodzących w strukturze stali DP w procesie ciągłego wyżarzania. Do zmian tych zalicza się statyczna rekrystalizacja ferrytu, przemiana wyjściowej ferrytyczno - perlitycznej struktury do struktury ferrytyczno -austenitycznej podczas nagrzewania i wygrzewania oraz przemianę austenitu w ferryt, a następnie w bainit i martenzyt podczas chłodzenia i galwanizowania. Stwierdzono, że rekrystalizacja statyczna ferrytu podczas nagrzewania rozpoczyna się w temperaturze około 600°C, podczas gdy przemiana ferryt +perlit w ferryt + austenit rozpoczyna się w temperaturze około 750°C. Kinetyka przemian fazowych podczas chłodzenia silnie zależy od maksymalnej temperatury cyklu wyżarzania. W przypadku, gdy temperatura ta mieści się w zakresie dwufazowym, obserwuje się epitaksjalny wzrost ferrytu, bez zarodkowania, na "starym" ferrycie. Przemiana ferrytyczna rozpoczyna się wtedy niemal natychmiast po rozpoczęciu chłodzenia. Z kolei, podczas chłodzenia z zakresu stabilności austenitu, przemiana ferrytyczna zachodzi mechanizmem zarodkowania i wzrostu. Obserwuje się wtedy znaczne obniżenie temperatury początku przemiany ferrytycznej poniżej temperatury Ae3, którego wielkość zależy od hartowności stali i od szybkości chłodzenia. W warunkach przemysłowych, możliwości regulowania struktury stali DP poprzez sterowanie szybkością chłodzenia są ograniczone z uwagi na proces galwanizowania. Przede wszystkim niemożliwe jest stosowanie dużych szybkości chłodzenia, co powoduje, że oprócz martenzytu, struktura stali DP zawiera również bainit. Symulacje fizyczne procesu ciągłego wyżarzania przeprowadzone z wykorzystaniem symulatora Gleeble 3800 pokazały, że właściwości mechaniczne stali DP silnie zależą od maksymalnej temperatury profilu temperaturowego oraz od temperatury i czasu starzenia.
EN
Analysis of static recrystallization inhomogeneities along the thickness of the cold rolled ferritic-pearlitic steel during continuous annealing process is the main goal of the present paper. The multiscale concurrent Cellular Automata Final Element (CAFE) model is used during the numerical investigation. The general concept of the CA algorithm of static recrystallization phenomenon is evaluated. The multiscale model of cold rolling based on the digital material representation (DMR) concept is used to accurately predict deformation energy distribution along the microstructure features and provide input data for the CA model. The final material morphology and recrystallization volume fractions after recrystallization in different plate locations: near the surface, in the middle of a plate, respectively, are evaluated. Finally, examples of obtained results of recrystallized microstructures are compared with the experimental data, to validate the approach.
PL
Celem niniejszej pracy jest analiza numeryczna niejednorodności rozwoju mikrostruktury na grubości pasma stali ferrytyczno-perlitycznej podczas ciągłego wyżarzania. W pracy wykorzystano bieżny model wieloskalowy na bazie metody elementów skończonych połączonej z metodą automatów komórkowych ( Cellular Automata Finał Element - CAFE). Model wieloskalowy walcowania na zimno oparto na idei cyfrowej reprezentacji materiału do dokładnego określenia energii zmagazynowanej w materiale w wyniku odkształcenia plastycznego, która zostanie wykorzystana jako jeden z parametrów początkowych modelu automatów komórkowych.Następnie przedstawiono wyniki w postaci morfologii materiału wraz z odpowiadającymi ułamkami części zrekrystalizowanej po procesie nagrzewania odpowiednio: przy powierzchni oraz w środku płyty. Uzyskane wyniki obliczeń numerycznych zostały porównane z danami eksperymentalnymi w celu walidacji modelu.
EN
The DP_builder software, which was developed to design the best continuous annealing technology for DP steels in a fast and efficient way, is presented in the paper. The key components of the system, including models of phase transformations during heating and cooling stages, are described first. Following this, major principles, features and implementation details of the system are presented. The main functionalities of the system compose simulation of microstructure evolution during thermal cycles and capability to apply simulations to design the best technological variant. Additionally a database, which stores material and technological information for all previously analyzed cases, was designed and incorporated in the system. Finally, graphical user interface was added to make the system easily accessible and user friendly.
PL
Przedstawiona praca opisuje zaprojektowany i zbudowany system, dzięki któremu w prosty sposób można zaprojektować technologię ciągłego wyżarzania stali typu DP (Dual-Phase). W pierwszej części pracy opisano główny moduł systemu wykorzystujący modele przemian fazowych podczas nagrzewania i chłodzenia. Następnie opisano zasady działania, dostępne funkcjonalności oraz szczegóły implementacyjne prezentowanej aplikacji. Główna funkcjonalność systemu łączy w sobie symulację ewolucji mikrostruktury podczas cykli nagrzewania i chłodzenia oraz optymalizację połączoną z procesem projektowania cykli, co daje duża swobodę podczas konfiguracji. Dodatkową funkcjonalnością systemu jest zdolność do przechowywania informacji o materiałach i parametrach technologicznych wszystkich analizowanych do tej pory przypadkach. Aby aplikacja była przejrzysta i łatwa w użytku wyposażono ją również w graficzny interfejs użytkownika.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.