Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 26

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
The aim of this study was to obtain degradable poly(Llactide-co-glycolide) (PLGA) microparticles (MPs) with a controlled size for bottom-up bone tissue engineering. The particles were produced using the classical single water/oil emulsification method by mixing with a magnetic stirrer and by using a novel approach based on the application of a microfluidic device. This study involved a thorough investigation of different concentrations of PLGA and poly(vinyl alcohol) (PVA) during microparticle fabrication. The oil phase was PLGA dissolved in dichloromethane or ethyl acetate at 1%, 2% and 4% w/v concentrations. The water phase was an aqueous solution of PVA at concentrations of 0.5%, 1%, 2%, 2.5%, 4% and 5% w/v. The size and size distribution of the MPs were evaluated with an optical microscope. Obtained MPs were incubated in contact with osteoblast-like MG-63 cells and after days 1 and 3, the cell viability was evaluated using the reduction of resazurin and the fluorescence live/dead staining. The results showed that for each concentration of PVA, the size of the MPs increased with an increase in the concentration of PLGA in the oil phase. The MPs obtained with the use of the microfluidic device were characterized by a smaller size and lower polydispersity compared to those obtained with emulsification by mixing. Both methods resulted in the generation of MPs cytocompatible with MG-63 cells, what paves the way to consider them as scaffolds for bottom-up tissue engineering.
EN
As a natural mineral, calcium carbonate (CaCO3) is widely investigated for various medical applications. It is a biocompatible material characterized by high degradation rate and great osteoconductivity. Many researchers evaluate CaCO3 in the form of particles as a candidate for use in drug delivery systems. In this study we present an optimization of the process of producing CaCO3 particles by the precipitation method with the use of combinations of different time of ultrasound treatment and surfactant concentrations used. Depending on the synthesis conditions, various sizes of particles were fabricated. The particles were loaded with sodium alendronate (Aln, 5% or 10% by weight) with a relatively high encapsulation efficiency between 40 and 50%, depending on the amount of Aln added and the drug loading of approximately 9% for both cases. MG-63 osteoblast-like cells were contacted with 10% wt./vol extracts of fabricated particles to assess their cytotoxicity. None of the extracts investigated was found to be cytotoxic. Furthermore, an in vitro study in direct contact of MG-63 cells with particles suspended in culture medium was performed. The results showed that the fabricated particles are cytocompatible with osteoblast-like MG-63 cells. However, the higher the concentration of the particle suspension and the greater the amount of alendronate present in the solution, the lower the metabolic activity of the cells was measured. The presented method of CaCO3 particles manufacturing is simple, cost-effective, and allows one to fabricate particles of the required size and shape that are cytocompatible with MG-63 cells in defined concentrations of particle suspensions.
EN
In this study, we aimed to compare how the microstructure and architecture of polymer supports influence adhesion, growth and differentiation of human mesenchymal stem cells (hMSC) in the context of bone tissue engineering. We manufactured poly(L-lactide-co-glycolide) (PLGA) three-dimensional supports in the form of microspheres by emulsification and porous scaffolds by solvent casting/ porogen leaching. HMSC were seeded on both materials and on control tissue culture polystyrene (TCPS, bottom of the wells) and cultured in basal or osteogenic medium for 1, 3, 7 and 14 days. HMSC proliferation and osteogenic differentiation were studied using lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) assays, respectively. Furthermore, cell morphology and viability were analyzed after live/dead fluorescence staining. The results show that the optimized emulsification conditions allowed the production of PLGA microspheres with a median size of 95 µm. The PLGA scaffolds had a porosity of 82.1% ± 4.2% and a pore size of 360 µm ± 74 µm. HMSC cultured on control TCPS in osteogenic medium were more spread and polygonal than those in basal medium. They were characterized with a lower proliferation rate, as shown by the LDH results, but higher ALP activity. This suggests that hMSC osteogenic differentiation was achieved. The same tendency was observed for cells cultured on microspheres and scaffolds. Cell proliferation was more efficient on both materials and control in growth medium as compared to differentiation medium. The amount of ALP, i.e. a marker of osteogenic differentiation, was elevated, as expected, in differentiation medium. However, on day 14 cells cultured on the scaffolds in basal medium exhibited the same osteogenic potential as those cultured in differentiation medium. In general, both microspheres and scaffolds promoted hMSC adhesion, proliferation, and osteogenic differentiation and may be used for bone tissue engineering.
EN
This study aimed to produce gellan gum-based hydrogels with the addition of zinc oxide as a potential dressing material. Hydrogels with ZnO concentrations of 0.01%, 0.02% and 0.04% were prepared, micrometric and nanometric ZnO particles were used, and a CaCl2 crosslinker was added to one part of the samples. All samples (14 types) produced by the freeze drying method were characterized with high swelling properties (>2000%), what is important to ensure the absorption of exudates from wounds. Samples with ZnO particles cross-linked with CaCl2 lost less mass after incubation in aqueous media and were characterized by better dimensional stability than those without crosslinking. The pH of the extracts of the samples containing ZnO particles was more neutral (pH 7.0-7.6) than that of the control gellan gum samples (pH of 5.5-6.1). The zinc release from cross-linked samples was twice as high for those containing nanometric particles than for micrometric particles (1.94 ± 0.04 mg/l and 0.93 ± 0.02, respectively). Relatively large amounts of released zinc species in the case of samples containing ZnO nanoparticles are promising in the context of the antibacterial properties and treatment of infected wounds. A lower amount of zinc released from samples with ZnO microparticles could be sufficient to prevent the development of the infection. Furthermore, both materials show satisfactory cytocompatibility with L929 fibroblasts, as shown by Alamar blue and live/dead viability tests, making them prospective candidates for wound healing
EN
Burn wounds are a unique type of injury that can affect the entire body and cause irreversible damage. They are characterized by significant morbidity and mortality due to the pathophysiology of the healing process manifested by unremitting inflammation, leading to a critical need to search for new treatments. This study focuses on the development of drug delivery systems in the form of lipid microparticles loaded with quercetin, as an agent to combat acute inflammation in burn wounds. We aimed to explore the effect of quercetin in modulating macrophage polarization from proinflammatory (M1) to anti-inflammatory (M2) phenotype. The absence of a cytotoxic effect of the produced particles on macrophages, as well as the lack of negative effects on their morphology was proven. The study confirmed the ability of quercetin and quercetin-loaded lipid microparticles to modulate macrophage polarization in an anti-inflammatory direction, based on the analysis of their surface markers expression performed with the use of flow cytometry. With the use of quercetin, the expression of M2 specific marker increased. Furthermore, better results were obtained for encapsulated quercetin, confirming the necessity of encapsulation to increase the therapeutic potential.
EN
The natural wound healing process consists of four basic phases: homeostasis, inflammation, proliferation, and remodelling. Macrophages play an important role in the body’s response to biomaterials, as they are modulators of the wound healing process and can polarize into different phenotypes capable of inducing both deleterious and beneficial effects on tissue repair. Curcumin (CU) is known for its anti-inflammatory properties and has the potential to treat diabetic foot ulcers, but it should be delivered to wounds in a controlled manner. In this study, the encapsulation of curcumin in polymeric microparticles based on poly(sebacic anhydride) (PSA) was developed using an emulsification method. PSA-based microparticles containing different concentrations of CU were obtained: 0% weight (wt). CU (unloaded microparticles), 5, 10, and 20 wt% CU. CU encapsulation efficiency and loading were determined using a fluorescence-based calibration curve method and semi-quantitative Fourier-transform infrared spectroscopy (FTIR) analysis. The potential cytotoxicity of the obtained biomaterials in contact with primary human macrophages and their susceptibility to polarization from the M1 (pro-inflammatory) phenotype to the M2 (antiinflammatory) phenotype were evaluated. The morphology of cells cultured in contact with polymeric microparticles was evaluated using phalloidin red and 4′,6-diamidino2-phenylindole (DAPI) staining. Macrophage phenotype was assessed using flow cytometry. The obtained biomaterials showed no cytotoxic effect on primary human macrophages. Flow cytometry studies showed enhanced polarization of macrophages into anti-inflammatory M2 phenotype when exposed to microparticles loaded with CU and CU powder as compared to unloaded microparticles
EN
Biphasic monolithic materials for the treatment of osteochondral defects were produced from polysaccharide hydrogel, gellan gum (GG). GG was enzymatically mineralized by alkaline phosphatase (ALP) in the presence of calcium glycerophosphate (CaGP). The desired distribution of the calcium phosphate (CaP) mineral phase was achieved by limiting the availability of CaGP to specific parts of the GG sample. Therefore, mineralization of GG was facilitated by the diffusion of CaGP, causing the formation of the CaP gradient. The distribution of CaP was analyzed along the cross section of the GG. The formation of a CaP gradient was mainly affected by the mineralization time and the ALP concentration. The formation of CaP was confirmed by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and mapping, as well as energy-dispersive X-ray spectroscopy (EDX) mapping of the interphase. The microstructure of mineralized and non-mineralized parts of the material was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) showing sub-micrometer CaP crystal formation, resulting in increased surface roughness. Compression tests and rheometric analyzes showed a 10-fold increase in stiffness of the GG mineralized part. Concomitantly, micromechanical tests performed by AFM showed an increase of Young’s modulus from 17.8 to more than 200 kPa. In vitro evaluation of biphasic scaffolds was performed in contact with osteoblast-like MG-63 cells. The mineralized parts of GG were preferentially colonized by the cells over the non-mineralized parts. The results showed that osteochondral scaffolds of the desired structure and properties can be made from GG using a diffusion-limited enzymatic mineralization method.
EN
There is a need to develop advanced multifunctional scaffolds for the treatment of bone tissue lesions, which apart from providing support for infiltrating cells could assure the delivery of drugs or biologically active molecules enhancing bone formation. We developed composite scaffolds for bone tissue engineering based on gellan gum (GG) and gelatin (Gel) hydrogel enriched with epigallocatechin gallate (EGCG) loaded CaCO3 microparticles and subjected to enzymatic mineralization with calcium phosphate (CaP). The method of manufacturing CaCO3 microparticles was optimized. The EGCG-loaded microparticles were smaller than those unloaded, and the release of EGCG was prolonged for up to 14 days, as shown by the Folin-Ciocalteu test. The particles reduced the viability of the MG-63 cells as compared to the control. However, when they were loaded with EGCG, their cytotoxicity was reduced. The particles were suspended in a GG/Gel hydrogel containing alkaline phosphatase (ALP), soaked in calcium glycerophosphate (CaGP) solution to create CaP deposits, and submitted to freeze-drying, in order to produce a porous scaffold. The microstructure of the scaffolds was characterized by optical and scanning electron microscopy and showed that the size of the pores corresponds to that of the spongy bone. In vitro tests with MG-63 cells confirmed that mineralized scaffolds support cell adhesion and growth to a higher extent than nonmineralized ones.
EN
Bone infections are a challenging problem as they may cause a permanent patient disability and even death. Additionally, their relapse rate is relatively high. The implantation of a local drug delivery system can be an effective way to fight bone infections. In this study, we present the process of surface bioactivation and immobilization of nanoparticles loaded with drugs. Our aim was to improve osseointegration of the ZrO2 surface by coating it with a bioactive layer containing poly(L-lactide-co-glycolide)(PLGA) nanoparticles (NPs) loaded with antibacterial drugs (gentamicin and bacitracin) using a biomimetic precipitation method. The ZrO2 substrates were prepared via pressing and sintering. The CaP-coating was obtained by immersing the substrates in ten-times concentrated simulated body fluid (10×SBF). NPs were prepared by the double emulsion method and the drug loading in NPs was assessed. Thus obtained NPs were applied on bioactivated ceramic substrates by the drop-casting method or by introducing them in the 10×SBF solution during the bioactivation process. The NPs were visualized using scanning electron microscopy (SEM). The NPs size and the Zeta potential were measured using dynamic light scattering (DLS) method. The microstructure of the coating and the efficiency of the NPs incorporation were tested by SEM. In this study, we proved the presented process to be an effective way to obtain biomaterials that could be used as drug delivery systems to treat bone infections in the future.
EN
Microparticles (MPs) made of fast biodegrading biomaterials, loaded with drugs, are considered a superior treatment method for pulmonary infections. One of the promising biomaterials for obtaining such a drug delivery system (DDS) is poly(sebacic anhydride) (PSA) due to its favourable degradation kinetics and mechanism. In this paper, we present a study of manufacturing MPs from PSA loaded with curcumin (CU) for pulmonary purposes. MPs were manufactured by oil-in-water emulsification; their morphology and size distribution were evaluated using optical microscopy, while the encapsulation efficiency and drug loading were obtained by the fluorometric assay. The cytotoxicity of the MPs, both the empty ones and loaded with CU, was analysed by in vitro tests with BEAS-2B human lung epithelial cells. To this end, metabolic activity by AlamarBlue assay and fluorescent staining (DAPI/ eosin) of the cells were performed. The MPs produced were round, regular in shape with diameters in the range of 1-5 µm and of yellow colour originating from CU. The CU encapsulation efficiency ranged from 42% to 55% and decreased with a higher CU ratio. The drug loading ranged from 4% to 11% and increased at a higher CU ratio. Both empty and CU-loaded MPs did not show a cytotoxic effect at concentrations up to 10 µg/ml.
EN
Microspheres (MS) made of biostable polymer, namely polystyrene, have been used as substrates for cell culture enabling rapid cell expansion in dynamic conditions. However, due to non-resorbability, polystyrene (PS) MS when repopulated with cells cannot be directly used in tissue engineering. Our concept was to produce MS from resorbable polymer – poly(L-lactide- -co-glycolide) (PLGA) as a support for adherent cells, e.g. osteoblasts. We hypothesize that such MS can be applied to the injured site to act as cell carriers or as modules for modular tissue engineering (MTE). In this article, we present the results of optimizing the PLGA MS manufacturing conditions via oil-in-water emulsification. Due to such a technique, MS with the required size, size distribution and properties suitable for cell culturing can be obtained. Three parameters of the oil-in-water emulsification were examined: the stirring speed of a water phase during MS manufacturing, the surfactant concentration, i.e. poly(vinyl alcohol) (PVA) in a water phase and concentration of PLGA in dichloromethane (DCM) as an oil phase. The results proved that the 7.5% PLGA concentration in DCM solution as an oil phase, the 0.5-2% concentration of PVA solution as a water phase and the stirring speed of water phase of 1000 rpm provided MS with the 160 μm mean diameter, which is suitable for cell culture. Moreover, the developed sieving and cleaning procedures were efficient to collect MS with the mean diameter of 280 μm, the more coherent size distribution and the ability to sink in the cell culture medium. The presence on the bottom of cell culture wells is crucial for MTE.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.