Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Voice over Internet Protocol (VoIP) has been recently one of the more popular applications in Internet technology. It benefits lower cost of equipment, operation, and better integration with data applications than voice communications over telephone networks. However, the voice packets delivered over the Internet are not protected. The session initiation protocol (SIP) is widely used signaling protocol that controls communications on the Internet, typically using hypertext transport protocol (HTTP) digest authentication, which is vulnerable to many forms of attacks. This paper proposes a new secure authentication and key agreement scheme based on Digital Signature Algorithm (DSA) and Elliptic Curve Cryptography (ECC) named (ECDSA). Security analysis demonstrates that the proposed scheme can resist various attacks and it can be applied to authenticate the users with different SIP domains.
EN
This paper proposes an efficient method of ECG signal denoising using the adaptive dual threshold filter (ADTF) and the discrete wavelet transform (DWT). The aim of this method is to bring together the advantages of these methods in order to improve the filtering of the ECG signal. The aim of the proposed method is to deal with the EMG noises, the power line interferences and the high frequency noises that could perturb the ECG signal. This algorithm is based on three steps of denoising, namely, the DWT decomposition, the ADTF step and the highest peaks correction step. This paper presents certain applications of this algorithm on some of the MIT-BIH Arrhythmia database's signals. The results of these applications allow observing the high performance of the proposed method comparing to some other techniques recently published.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.