Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
An efficient finite element approach was recently developed to analyze encased cold-formed steel (CFS) structures. This new technique replaced encasing material with unidirectional springs, analogous to the Winkler foundation concept, to shorten the analysis time while ensuring accuracy and reliability in predicting the structural behaviour of encased CFS components. In this paper, the validity, and limitations of the simplified spring model to represent outstanding plates were assessed. The investigation demonstrated that the simplified spring model could effectively predict the ultimate load for a wide range of ultra-lightweight concrete moduli (50–250 MPa) with an acceptable error. The analysis indicated that plate elements initially in cross-section class 4 without encasing material become at least class 3, or better as a consequence of encasing. Previously reported experiments were used to evaluate the performance of the ESM. The analysis demonstrated that the ESM can accurately predict the local failure ultimate load of encased CFS sections with an acceptable error percent and significantly less computational effort than a 3D solid model.
EN
Nowadays, cold-formed steel (CFS) has become widely used in the field of lightweight structures. In 2016, the Budapest University of Technology and Economics initiated a research study on a unique structural system using CFS and utilized ultra-lightweight concrete as an encasing material. This material serves as continuous bracing that improves CFS element resistance, stability behavior and performance, while also manifesting heat insulation capabilities, thus helping achieve sustainability goals. This paper is considered a continuation of previous research conducted by the authors. An experimental investigation was carried out on encased CFS columns subjected to eccentric loading. A total of fourteen stub-columns, with two distinct thicknesses, were subjected to various loading conditions for testing. The test results showed that local failure controlled the behavior of all the tested elements. The reduction in capacity resulting from eccentricity with respect to centric resistance varied between 20% and 52%, depending on the load position applied and on the core thickness of the tested steel elements. Moreover, the test outcomes were compared to the Eurocode analytical solution of pure steel elements. The overall load increment ranged from 46% to 18%, with a more noticeable bracing impact observed in the case of slender elements. Material tests also supplement the results.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.