Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents an improved Gap-based Memetic Differential Evolution (GaMeDE2), the modification of the GaMeDE method, which took second place in the GECCO 2020 Competition on Niching Methods for Multi-modal Optimization. GaMeDE2 has reduced complexity, fewer parameters, redefined initialisation, selection operator, and removed processing phases. The method is verified using standard benchmark function sets (classic ones and CEC2013) and a newly proposed benchmark set comprised of deceptive functions. A detailed comparison to state-of-the-art methods (like HVCMO and SDLCSDE) is presented, where the proposed GaMeDE2 outperforms or gives similar results to other methods. The document is concluded by discussing various insights on the problem instances and the methods created as a part of the research.
EN
A Travelling Salesman Problem (TSP) is an NP-hard combinatorial problem that is very important for many real-world applications. In this paper, it is shown, that proposed approach solves multi-objective TSP (mTSP) more effectively than other investigated methods, i.e. Non-dominated Sorting Genetic Algorithm II (NSGA-II). The proposed methods use rank and crowding distance (well-known from NSGA-II), combining those mechanisms in a novel, unique way: competing and co-evolving in the evolution process. The proposed modifications are investigated and verified by the benchmark mTSP instances, and results are compared to other methods.
3
Content available remote A Specialized evolutionary approach to the bi-objective travelling thief problem
EN
In the recent years, it has been shown that real world-problems are often comprised of two, interdependent subproblems. Often, solving them independently does not lead to the solution to the entire problem. In this article, a Travelling Thief Problem is considered, which combines a Travelling Salesman Problem with a Knapsack Problem. A Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is investigated, along with its recent modification - a Non-Dominated Tournament Genetic Algorithm (NTGA). Each method is investigated in two configurations. One, with generic representation, and genetic operators. The other, specialized to the given problem, to show how the specialization of genetic operators leads to better results. The impact of the modifications introduced by NTGA is verified. A set of Quality Measures is used to verify the convergence, and diversity of the resulting PF approximations, and efficiency of the method. A set of experiments is carried out. It is shown that both methods work almost the same when generic representation is used. However, NTGA outperforms classical NSGA-II in the specialized results.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.