Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Current life prediction methods of Electromechanical equipment bearings have issues of low accuracy and lack of stability. To address these problems, firstly, indicators based on life degradation characteristics of bearings are selected. Then, a deep neural network-based life prediction model is constructed. Finally, the K-nearest neighbor algorithm is introduced to correct the deviation of the deep neural network prediction model, and a hybrid life prediction model is designed. Results show that effectiveness of the designed model was better, which was of great practical significance for detecting bearing failures in advance, reducing equipment losses and improving equipment reliability.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.