Znaleziono wyników: 2
Liczba wyników na stronie
Wyniki wyszukiwania
researchers have focused on how to program routing protocols to maximize energy conservation in WSNs. The clustering mechanism is demonstrated that separating the network into clusters may significantly decrease energy consumption. In this paper, we propose distributed tree-based clustering routing protocol for IoT applications (EE-DTC). In order to enhance efficient energy, EE-DTC chooses cluster head nodes based on the remaining energy, the location, and the density of nodes. In addition, to lengthen the network lifespan, we create multi-hop routes with short communication links intra-clusters by building the minimum spanning tree using the Kruskal algorithm. Our experiment results show that the performance of EE-DTC overcomes the TBC and LEACH-VA protocols in terms of increasing network lifespan, reducing energy consumption, and improving efficient energy.
contains two major works: Firstly, the chain-based routing method is applied to connect sensor nodes into a chain in which each node transmits only with the nearest neighbor using the remaining energy and distance of nodes as standard parameters to determine which node will be selected the chain leader, secondly, we fuse and compress one or more data packets to generate a result packet with small size base on the Slepian-Wolf and Dempster-Shafer theory. The simulation results exhibit that the energy efficiency of our proposed protocol can be improved by 40\%, 20\%, and 15\% compared to low-energy adaptive clustering hierarchy (LEACH), power-efficient gathering in sensor information system (PEGASIS), and an improved energy-efficient PEGASIS-Based protocol, respectively.
Ograniczanie wyników