Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: Due to changes in the volume of oil transportation, part of the pipelines must be temporarily decommissioned. The purpose of the work is theoretical and experimental study of pressure fluctuations during operation of oil pipelines and their impact on the durability of the pipeline material in work state and after temporary decommissioning (conservation). Design/methodology/approach: The results of oil pressure fluctuation research have given a chance to choose the terms of experimental research providing of the pipe metal mechanical features changes research during oil pipeline exploitation. Findings: Fatigue test modes are selected based on the calculations of the mathematical model developed. Experimental studies of the dependence of the fatigue strength of the pipe material on the conditions of operation have been carried out, which made it possible to determine the parameters of the fatigue curve of the samples. Has been defined that fatigue strength for the new metal pipe samples is more for 20-25% than for the metal samples which had the contacts with lime milk and for 30-40% more than for metal samples which were under exploitation. Research limitations/implications: In the future, more combination of "pipe material - preservation medium" should be explored to establish pain of general regularities. Practical implications: The probabilistic curves of the pipeline non-destruction are constructed, which will be used for practical calculations of the reliability and durability of the 13G1S-U steel pipelines. Originality/value: Mathematical model is made that describes non-stationary oil moves in oil pipeline, that has been caused by jump like changes of oil supply in oil pipeline, on this basis was defined, that oil pressure in oil pipeline provides within non stationary process in a range of 0.4-0.6 Hz frequency and amplitude fluctuation of pressure is 0.1-0.5 MPa.
EN
Purpose: In the process of laying on the bottom of the sea material of the pipeline undergoes single-cycle alternating load. The purpose of the work is to determine the effect of pre-operational loads on the resource of marine pipelines. Design/methodology/approach: The influence of the method of construction of pipelines on their stress-strain state is analysed. According to the real modes of packing of sea pipelines, the loading regime is programmed and the laboratory modelling of the pipelaying process by the S-method has been programmed. Findings: According to the results of one-cycle shift load were obtained characteristics of the hysteresis loop. It is proposed to simplify the mathematical description of the hysteresis loop of the pipeline laying cycle in the given form. It was shown that the preload during the construction process negatively affects the durability of the pipeline material due to the exhaustion of its plasticity resource, reducing it to 70%. Research limitations/implications: In the future, investigations into the effect of overloading and overloading during the repair of pipeline sections on their durability and on the safe exploitation of resources should be continued. Practical implications: The developed method of estimation of influence of preoperational loads in the process of pipeline laying on its safe exploitation resource is used in gas-extraction enterprises. Originality/value: To forecast the deformation behaviour of the pipeline material in the laying cycle, it is efficient to use diagrams of a sign-changing single-cycle bend, which were built considering the creep. The fatigue life capability of a steel pipeline depends on the history of the pipeline load in the laying cycle. Ratio σ*0.2c / σ* 0.2t and εyc / ε yt can use as power and deformation criteria for evaluating Bauschinger effect. It is suggested that fatigue damage is determined by the width of the hysteresis loop.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.