Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article presents the watercraft recognition and identification system as an extension for the presently used visual water area monitoring systems, such as VTS (Vessel Traffic Service) or RIS (River Information Service). The watercraft identification systems (AIS - Automatic Identification Systems) which are presently used in both sea and inland navigation require purchase and installation of relatively expensive transceivers on ships, the presence of which is not formally required as equipment of unconventional watercrafts, such as yachts, motor boats, and other pleasure crafts. These watercrafts may pose navigation or even terrorist threat, can be the object of interest of the customs, or simply cause traffic problems on restricted water areas. The article proposes extending the traffic supervision system by a module which will identify unconventional crafts based on video monitoring. Recognition and identification will be possible through the use of image identification and processing methods based on artificial intelligence algorithms, among other tools. The system will be implemented as independent service making use of the potential of SOA (Service Oriented Architecture) and XML/SOAP (Extensible Markup Language/Simple Object Access Protocol) technology.
PL
System Mobilnej nawigacji śródlądowej MOBINAV powstał w ramach projektu badawczego finansowanego przez NCBiR w programie LIDER IV. W swoich założeniach jest on produktem dedykowanym turystycznym użytkownikom śródlądowych dróg wodnych, w którym wykorzystano nowoczesne metody przetwarzania i prezentacji informacji przestrzennej. Wymiernym efektem projektu, oprócz wypracowanych metod i modeli, jest demonstrator technologii MOBINAV. Główna część demonstratora została opracowana w postaci aplikacji na urządzenie mobilne, która obejmuje wybrany zakres funkcjonalności systemu. Wśród nich przede wszystkim obsługę modelu danych opracowanego w systemie oraz jego wizualizację, zgodnie z przyjętym modelem prezentacji kartograficznej, a także zestaw wybranych analiz przestrzennych. Analizy obejmują przede wszystkim pomiary zależności przestrzennych oraz asystenta nawigacji. Końcowym etapem projektu było przeprowadzenie testów opracowanej technologii na bazie zbudowanego demonstratora. Testy zostały przeprowadzone w następujących grupach: testy prezentacji kartograficznej, testy funkcjonalności związanych z obsługą mapy, testy analiz przestrzennych, testy funkcjonalności nawigacyjnych na podstawie sensorów symulowanych, kompleksowe testy w warunkach rzeczywistych. W artykule przedstawiono koncepcję procesu testowania oraz sprawozdanie z jego realizacji. Wyniki badań zilustrowano przykładowymi zdjęciami. Wnioski obejmują analizę realizacji zakładanych funkcjonalności oraz szereg potencjalnych kierunków rozwoju systemu, które wyniknęły w czasie testów. Przeprowadzone badania pozwoliły na weryfikację postawionych założeń oraz poprawność implementacji poszczególnych funkcji. W tym sensie noszą one znamiona zarówno weryfikacji, jak i walidacji.
EN
The mobile inland navigation system – MOBINAV – was created within the research project financed by the National Centre for Research and Development under the LIDER IV programme. The system, according to its assumptions, is a product designed for recreational users of inland shipping waters, in which modern methods of spatial data processing and information visualisation are used. Apart from the developed methods and models, the results of the project include the MOBINAV technology demonstrator. Its main part is a mobile application in which selected functionalities are implemented. The most important of them are data handling model, designed in the project and its visualization with the use of a specialised cartographic model, also designed in the project, as well as a set of dedicated spatial analyses. The analyses include measurements of spatial relationships as well as the assistant of navigation. The last phase of the project included technology testing. It was performed with the use of the developed demonstrator. The tests were performed in the following stages: cartographic presentation tests, map handling functionalities tests, spatial analyses tests, navigational functionalities tests based on simulated sensors, complex tests in real conditions. The paper presents the concept of the tests and the reports of this stage of the project. The results have been enhanced with suitable screenshots of the application. The conclusions cover analysis of functionalities implementation, as well as the set of possible future improvements of the system. The research presented in the paper allowed for verification of the system assumptions stated in the specification and for proper implementation of them in the demonstrator. Thus, the performed research may be considered both, as validation and verification.
EN
The article presents a method to determine the position of mechanically scanned sonar images by comparing them with the database of simulated synthetic images. The synthetic images are generated from high-density bathymetric data coming from the same fragment of water region, using the ray tracing method. The article discusses the issues related to the choice of the probability function as the method of image comparing which allows to find the correct georeference of the real image. For the correlation method and the logical conjunction method, which are believed to give the best results, detailed studies were performed, including boundary cases. The obtained results of matching are presented in tabular and graphic form.
PL
W powszechnie stosowanych statkowych systemach nawigacyjnych prezentujących informację przestrzenną, kluczową rolę pełnią dane wektorowe. Profesjonalne systemy typu ECDIS (Electronic Chart Display and Information System), czy też jego śródlądowy odpowiednik InlandECDIS wykorzystują do prezentacji danych geograficznych elektroniczne mapy nawigacyjne w standardach ENC oraz InlandENC, które są całkowicie wektorowymi bazami danych. Z drugiej strony lądowi użytkownicy rekreacyjni przyzwyczajeni są do różnego rodzaju geoportali, czy serwisów przedstawiających informacje przestrzenne w postaci ortofotomap lub podkładów rastrowych. W aspekcie wykorzystania nowoczesnych systemów mobilnych dla śródlądowych użytkowników rekreacyjnych, szczególnie istotne jest więc zapewnienie możliwości integracji danych rastrowych na ekranie. Wyświetlenie ortofotomapy jako danych podkładowych i nałożenie na nią warstw wektorowych wraz z IENC przy zachowaniu odpowiedniej przezroczystości może zaowocować czytelnym dla każdego, nawet niedoświadczonego użytkownika, obrazem zawierającym wiele elementów treści. Problematyczne kwestie w procesie zarządzania danymi rastrowymi w systemie, to zapewnienie dostępu do danych, a więc łączności i możliwości pozyskania ich z poszczególnych usług sieciowych typu WMS lub WCS. Alternatywnym podejściem jest pozyskanie warstw rastrowych (głównie zdjęć lotniczych) z ośrodka geodezyjnego i przechowywanie na dysku urządzenia/karcie. Termin „zarządzanie” oznacza w tym wypadku pozyskiwanie, transformację, konwersję, integrację oraz przygotowanie danych do wizualizacji zgodnej z przyjętym modelem kartograficznym. Artykuł przedstawia wyniki badań nad możliwością integracji danych rastrowych w systemie Mobilnej nawigacji śródlądowej. Badaniami zostały objęte oba warianty. W pierwszym, po szczegółowym przeanalizowaniu architektury usługi wraz z jej dostępnymi interfejsami, zaproponowano algorytm podłączania i obsługi WMS w formie warstwy rastrowej dla dwóch trybów działania aplikacji – trybu przeglądania mapy oraz trybu nawigacyjnego. W drugim skupiono się na analizie możliwości wykorzystania własnych mapowych danych rastrowych i sposobach ich zarządzania oraz udostępniania użytkownikom. Analizowano przechowywanie ortofotomap w oryginalnych rozmiarach i rozdzielczości, po przekształceniu w podziale na sekcje pokrywające określony obszar (np. obszar komórki mapy – ang. chart cell) oraz jako małe wycinki wizualizujące jedynie obszary o interesującej infrastrukturze lub treści. Ostatecznie przyjęto rozwiązanie polegające na przechowywaniu i udostępnianiu mapowych obrazów rastrowych jedynie dla ograniczonych przestrzennie obszarów reprezentujących ciekawe lub ważne ( z punktu widzenia użytkownika) regiony, które z jakichś powodów nie są wystarczająco reprezentowane za pomocą danych wektorowych. Artykuł przedstawia wyniki analiz oraz szczegóły przyjętego rozwiązania.
EN
It is the vector data that plays a key role in the commonly used ship navigation systems that present spatial information. Professional ECDIS (Electronic Chart Display And Information System), or its equivalent InlandECDIS systems, use electronic navigational charts and ENC/InlandENC standards for presenting geographical data. They are both build entirely on vector databases. On the other hand, recreational users are accustomed to all sorts of geoportals or services representing spatial information as ortho or raster image. It seems, therefore, that in terms of use of modern mobile systems for inland recreational users, it is especially important to ensure the ability to integrate raster data on screen. Displaying an orthophotomap as a background and applying IENC vector layers above it while maintaining adequate transparency may result in a readable image containing multiple pieces of content for everyone, even an inexperienced user. The most problematic issue in the process of raster data management is providing access to data, by ensuring proper transfer and ability to obtain it from various WMS or WCS services. An alternative approach is to obtain raster layers (mainly aerial photographs) from the geodetic resources and to store them directly in the memory of the device. In this case the term „management” means the acquisition, transformation, conversion, integration and preparation of data for its visualization according to the accepted model of cartography. The article presents results of research on the possibility of raster data integration in the mobile inland navigation system. The study has covered two separate approaches. In the first one, after a detailed analysis of architecture services, together with its available interfaces, it proposed an algorithm connecting and operating WMS raster layer in the form of two modes of application – the viewing mode and the navigation mode. The second approach focuses on analyzing the possibility to use own raster mapping sources and also managing and providing this data to systems users. The analysis covered different ways of storing maps: in their original size and resolution, after transformation as a series of tiles covering a defined area or as certain sections visualizing only areas of interest. Finally, a solution consisting of storing and sharing raster map images only for limited areas representing regions interesting or important from the users’ perspective, which – for some reasons – are not sufficiently represented by vector data. The article presents the results of the analysis and details of the adopted solution.
EN
Route planning is one of the core functionalities of modern navigational systems also in inland waters. There is a possibility of at least partial automation of this process with the use of graph searching algorithms. Main problem here is to create a graph based on nautical spatial data. The paper presents research on examining dif-ferent graph searching methods for inland waters. The concept of using combined approach for vector and ras-ter data is given, followed by research results for raster data.
EN
Mechanically scanned imaging sonars (MSIS) are mainly used for detection of small objects or aiding in underwater navigation in limited area. Obtained images are detailed and, especially for not experienced user, they may give an impression of a photography. However, the acoustic method of acquisition of sonar data must be taken into account, as understanding observed scene is essential to properly interpret the data. To aid the process of image interpretation the reference data may be used. In this paper the application of bathymetric data to MSIS sonar images is proposed. To match high resolution of MSIS images the density of bathymetric data must exceed the requirements of S-44 IHO norm. For this research a swath bathymetric system based on phase interferometry of acoustic signal was used to obtain such data in shallow waters. The article covers the motivation of usage of such data in comparison to other existing bathymetric systems. The proposed method uses acquired data to create additional channel in sonar image emphasizing sea-bed gradient in relation to sonar head position and distinguish invisible / shadowed areas. Proposed method is based on directional derivative of a sea-bed. Method presented in this article is a part of bigger research on enhancing interpretative potential of stationary sonar images [1].
PL
Stacjonarne wysokoczęstotliwościowe sonary skanujące (ang. MSIS) wykorzystywane są głównie do obrazowania znanych struktur podwodnych oraz wspomagania nawigacji pojazdów bądź nurków w trakcie inspekcji lub poszukiwań. Ich wysoka częstotliwość oraz możliwość wizualizacji wiązek podczas rejestracji w trybie bliskim rzeczywistemu pozwala na śledzenie ruchu obiektów znajdujących się w zakresie skanowania sonaru. Oprogramowanie producenta pozwala na manualne wskazywanie celów do śledzenia przez operatora sonaru. Zdalnie sterowany pojazd podwodny (ang. ROV) służy głównie do wizualnej inspekcji budowli hydrotechnicznych lub szukanych obiektów. Wyposażony w kilka pędników ROV, jest w stanie poruszać się w zadanym przez operatora kierunku. Sterowanie wspomagają również, proste sensory nawigacji podwodnej: kompas oraz czujnik głębokości. Dodatkowo, dzięki zamontowanej kamerze i oświetleniu, aktualny obraz przesyłany jest do konsoli sterowania ustawionej na powierzchni. Proponowane podejście pozwoli na automatyzację procesu odnajdowania pojazdu pod warunkiem odpowiedniego doboru parametrów rejestracji obrazów MSIS. W badaniach przetestowano w warunkach rzeczywistych wpływ współczynnika wzmocnienia, korekcji zasięgowej oraz szybkości skanowania na wykrywanie obiektu. Dla wybranych ustawień przeprowadzono różne scenariusze przebiegu śledzenia. Algorytm testów lokalizacji obiektu zaimplementowano w środowisku Matlab. Odpowiedni dobór parametrów rejestracji pozwoli na ułatwienie wyodrębnienia obiektu ruchomego na obrazie sonarowym. Pozwoli to na usprawnienie procesu jego lokalizacji i śledzenia. Do badań wykorzystano sonar skanujący MS1000 oraz robota podwodnego VideoRay Explorer.
EN
Stationary high-frequency scanning MSISs (Mechanically Scanned Imaging Sonar) are mainly used to visualize previously known underwater structures and to aid ROVs (Remotely Operated Vehicles) and divers to navigate during underwater inspections and surveys. Their high frequency and ability to draw sonar beam in close to real-time mode allows to track objects situated in their scanning range. ROVs usually play an additional role in visual inspections of underwater structures and sought objects. Equipped with several propellers, ROVs are able to move in any direction specified by its operator. Steering is also supported by basic navigational sensors as compass and depth sensors. Additionally, thanks to an embedded video camera with LED lightning, real-time image can be instantly sent to controller’s console on the shore. The proposed approach allows automation of the process of first localization of the moving object (ROV) in the sonar image, provided that a proper selection of parameters for recording MSIS images is made. In the studies, several tests were conducted of the actual influence under real conditions of sonar signal gain factor, TVG correction and scan speed on the detection process. Different tracking scenarios were run for selected settings. Testing algorithm for object localization was implemented in Matlab environment. Proper selection of recording parameters facilitates separation of the moving object on sonar image. This improves the process of tracking and tracing the moving objects. The study used MS1000 scanning sonar and VideoRay underwater robot explorer to conduct all tests.
EN
The paper presents a functional concept of an interface for one of the users in Geoinformatic System for Port Security. The system goal is to support port security by providing a selected groups of information and displaying them on precise charts. The complex system assumes simultaneous employing of various users including port management and port authorities. One of the planned users is patrol boat crew, which role is to be a mobile tool for waterways monitoring and should perform as on-scene sensor. The interface concept presented in the paper is based on ECDIS, as it was assumed, that the user on patrol boat is usually familiar with thus system. The goal of the research was to create interface project with the principles of UCD (User Centered Design) based on CHI (Computer-Human Interaction) approach. In the article the short functional analysis of standard ECDIS interface is presented. It is followed by comparison between its common users and the future users of GEO system with the emphasis on their requirements, expectations and demands. As a result a group of dedicated, user-orientated functions were agreed. A modification of ECDIS user interface is proposed in order to implement mentioned features.
PL
Artykuł przedstawia koncepcję funkcjonalną interfejsu dla jednego z użytkowników geoinformatycznego systemu bezpieczeństwa w porcie. Celem systemu jest wspomaganie bezpieczeństwa w porcie przez dostarczenie wybranych grup informacji i pokazywanie ich na tle dokładnych map. Cały system zakłada równoczesne wykorzystanie różnych użytkowników, włącznie z kierownictwem portu i kapitanatem. Jednym z przewidywanych użytkowników jest załoga łodzi patrolowej, która ma pełnić funkcję ruchomego patrolu na drogach wodnych. Koncepcja interfejsu przedstawiona w artykule jest oparta na ECDIS, tak więc założono, że użytkownik na łodzi patrolowej jest obeznany z takim systemem. Celem badań było stworzenie projektu interfejsu na zasadach skupienia się na użytkowniku z uwzględnieniem zasad interakcji człowieka z komputerem. W artykule przedstawiono krótką analizę funkcjonalną standardowego systemu ECDIS, która została uzupełniona porównaniem obecnych i przyszłych użytkowników takich systemów, z naciskiem na ich wymagania, oczekiwania oraz popyt na tego rodzaju usługę. Jako rezultat zaproponowano zespół dedykowanych, zorientowanych na użytkownika funkcji systemu. Zaproponowano modyfikację interfejsu użytkownika ECDIS z myślą o implementacji wspomnianych własności systemu.
EN
The paper presents a software implementation of multiple model neural filter for radar target tracking. Such a filter may be proposed as an interesting alternative for numerical filters. The main purpose of software implementation is to provide a tool for complex research of the filter possibilities and adjusting options. A concept of a filter is briefly mentioned, however the main body of paper is focused on user-approach detailed description of application with UML use-case diagrams. Examples of detailed presentation of usecases are given and the general use-case diagram for application is included. The application itself is to be an advanced tool for researchers interested in analyzing target tracking process, providing different tracking methods and the possibility of adjusting their parameters. The possibility of simulating any scenario, as well as working with real data (also on-line) was ensured. The research was financed by Polish National Centre of Science under the research project “Development of radar target tracking methods of floating targets with the use of multiple model neural filtering”.
PL
Planowanie przestrzenne sensorów obserwacyjnych na śródlądowych drogach wodnych wymaga opracowania trójwymiarowej mapy akwatorium, na podstawie której możliwe jest wstępne określenie pozycji kamery CCTV bądź radaru. Mając na uwadze przestrzenny charakter planowania, mapa taka powinna w odpowiedni sposób reprezentować obiekty rzeczywiste zarówno w aspekcie ich identyfikacji jak również przeprowadzenia analizy widoczności. W przypadku tworzenia różnych obiektów mapy największe trudności wystąpiły podczas modelowania drzew. Biorąc pod uwagę ich liczebność i znaczenie w przestrzennym planowaniu sensorów, opracowanie odpowiednich modeli oraz ich implementacja w mapie wymagały zastosowania dla nich zróżnicowanej reprezentacji geometrycznej. Poziom szczegółowości modeli związany jest głównie z charakterem terenu badanego akwatorium, który ogólnie można podzielić na teren zurbanizowany, niezurbanizowany oraz portowy. Nawiązując do standardu City GML, roślinność można przedstawić w postaci indywidualnych modeli roślinności (np. pojedyncze drzewo) oraz modeli reprezentujących ich zgrupowania (np. obszar zalesiony). W przypadku obszarów zurbanizowanych i portowych przeważały drzewa pojedyncze oraz zgrupowane na niewielkich obszarach, natomiast na niezurbanizowanych obszary zalesione. W związku z powyższym w artykule zaprezentowano metody modelowania drzew dostosowanych do typu obszaru, co sprowadzało się do opracowania odpowiednich modeli powierzchniowych oraz pojedynczych modeli drzew. Stworzenie odpowiednich modeli drzew dostosowanych do charakteru obszaru akwatorium umożliwia przeprowadzenie odpowiednich analiz przestrzennych z wykorzystaniem dedykowanej mapy trójwymiarowej.
EN
Spatial planning of observation sensors on inland waterways requires creating a 3D map of water area, on which basis defining an initial position of a CCTV camera or radar is possible. Bearing in mind the spatial character of planning, such a map should represent in a proper way real objects in aspect of their identification as well as visibility analysis. In case of creating different map objects the most difficulties occurred during process of trees modeling. Taking in consideration their quantity and importance in spatial planning of sensors, developing adequate models and their implementation in 3D map required applying diversified geometric representation. The level of model details related mainly with the character the water area, which can be classified as urbanized, not urbanized or port terrain. Referring to the CityGML standard, vegetation can be represented in the form of individual vegetation model (eg. single tree) or the models representing their groups (eg. wooded area). In the case of urban and port areas single trees or their small groups are dominating, while in the non-urbanized terrain wooded areas are dominant. Accordingly, the article presents methods for threes modelling adapted to the type of terrain, which amounted to developing appropriate surface models and individual tree models. The creation of appropriate tree models adapted to the nature of the area allowed for the appropriate spatial analysis using a dedicated three-dimensional map.
PL
Ochrona portów stanowi jedno z istotniejszych zadań wpływających na poziom bezpieczeństwa usług portowych, a także infrastruktury i pracowników portu. Oparcie kompleksowego systemu wspomagającego działania ochrony na danych przestrzennych pozwala na wykorzystanie funkcji i analiz niedostępnych dla tradycyjnych systemów monitoringu. Wielomodułowość systemu, indywidualne rozwiązania dla zróżnicowanych typów użytkowników i intuicyjna wizualizacja przestrzeni obszaru portu integruje zadania poszczególnych uczestników systemu i pozwala na zharmonizowane zarządzanie ochroną w przypadku wystąpienia zdarzeń niebezpiecznych. W artykule przedstawiono dane, zakres przestrzenny, schemat budowy i architekturę systemu opartego na mapie dwu i trójwymiarowej obszaru objętego systemem geoinformatycznym. Poszczególne moduły systemu realizują funkcje określone przez przyszłych użytkowników będących pracownikami Zarządu Portu Szczecin–Świnoujście, gdzie system zostanie pilotażowo wdrożony. Analizę funkcjonalności przeprowadzono w oparciu o metodykę systemową z wykorzystaniem zunifikowanego języka modelowania UML i diagramów przypadków użycia systemu. Zdefiniowano użytkowników systemu, ich wymagania i potrzeby oraz określono poszczególne role w systemie. Przedstawiono zestawy danych oraz analiz niezbędnych do realizacji przypisanych zadań. Określona funkcjonalność stała się podstawą opracowania projektu ergonomicznego interfejsu systemu ochrony portu opartego o moduł mapowy stanowiący serce systemu.
EN
Port security is one of the most important tasks that affect the safety level of port services, port infrastructure and its staff. Basing the comprehensive system of supportive measures for the port security on spatial data allows using features and analysis not available in traditional monitoring systems. Multi-modularity of the system, individual solutions for different types of users and intuitive visualization of the ports area integrate the tasks of the individual participants in the system and allows managing the harmonized protection in case of hazardous events occurrence. The paper presents the data, spatial extent, structure scheme and system architecture based on two and three-dimensional map of the area covered by the geoinformatic system. The individual modules of the system perform the functions specified by future users who are employees of the Port of Szczecin–Świnoujście, where the system will be implemented on a pilot basis. Functional analysis was carried out using the unified modeling language UML and use case diagrams. System users, their requirements and needs were defined and their different roles identified. The paper presents and analyzes the data sets necessary to perform assigned tasks. A specified functionality was the basis for drafting an ergonomic interface for port security system based on maps module.
PL
Sonar skanujący w sposób łatwy i precyzyjny wizualizuje ściany nabrzeży, przed i w czasie wykonywania operacji nurkowych, dla prowadzenia inspekcji budowli hydrotechnicznych. Użycie tej technologii pozwala także na zabezpieczenia przed zagrożeniami wpływającymi na pracę osoby znajdującej się pod wodą w trakcie kontroli lub naprawy konstrukcji. Ze względu na ściśle określoną celowość pomiaru, dużą rozdzielczość obrazu i charakter wizualizacji zbliżony do obrazowania fotograficznego - interpretacja danych sonarowych nie musi stanowić dużego wyzwania. Oznacza to duże ułatwienie dla osób odpowiedzialnych za przeprowadzanie inspekcji nabrzeży. Pozyskane dane sonarowe posłużą do przygotowania tekstur do pokrycia podwodnej części trójwymiarowego modelu portu, w zakresie określonym w założeniach projektu. Ponadto zinterpretowane obrazy będą podstawą do zaplanowania remontów poszczególnych nabrzeży lub tymczasowego wyłączenia z eksploatacji ich fragmentów. Prezentowane w artykule badania stanowią wstęp do opracowania metody automatycznego mozaikowania obrazów sonarowych z wykorzystaniem tradycyjnych algorytmów przetwarzania obrazów. Pozwoliłoby to na znaczne skrócenie procesu generowania tekstur.
EN
Underwater visualization of hydro-technical constructions is conducted by means of imaging technology appropriate for the character of water environment, in which the objects are situated. Port areas are characterized by high water pollution. With low limpidity acoustic methods of visualization are giving significantly better results because of better sound waves propagation in aquatic environment. Inspection of underwater parts of the wharf is an essential procedure for operational quays. Their regular performance guarantees safety of moored vessels and port operating crews. Nowadays, inspections are carried out by specialized divers, but due to poor visibility they are able neither to precisely evaluate the size of damages nor to determine the repairs needed. Stand-alone rotary sonar working in a horizontal mode for scanning side walls allows to register high resolution images of the condition of piers, wharfs, dams, weirs and pillars. The measurement technique is based mainly on even distribution of sonar scans along the scanned wall without any changes in sonar beam range. Setting the gaps between each image registration, blind sectors need to be taken into account, which should be eliminated by applying appropriate coverage. High frequency of acoustic beam allows obtaining images of a few centimeter spatial resolution depending on the sonar beam range. An R&D project" GIS solution for operational actions related to marine port security" realized by a research team of the Maritime University of Szczecin intends to establish a system based on precise land and underwater geospatial data in the designated port area. In order to regularly obtain data to the 2 and 3D system map modules acquisition, processing and mosaicking of sonar data technologies were developed to allow the visualization of quays. Using high-frequency scanning sonar MS1000 three registration series were performed along the quays of Port Szczecin-Swinoujście. The sonar was moved along the shoreline every 10 meters using a beam scanning range of 15 meters which ensured full coverage of the surface of the wharf walls. The positions of images were determined by measuring the GPS-RTK corrections using ASG-EUPOS. The images were processed into a mosaic on standard publishing software. The acquired data will be used to prepare the textures to cover a three-dimensional model of the underwater part of the port within the area specified by the objectives of the project. In addition, the images will become a base for scheduling repairs of particular piers or temporal withdrawal of their fragments from operation. The process of manual mosaicking sonar images could be automated in the future, for example, based on the method of matching markers. This would significantly shorten the process of generating textures.
PL
Dane batymetryczne stanowią niezbędną część informacji zawartych w komórkach śródlądowych map nawigacyjnych. Ze względu na brak standardu prowadzenia pomiarów jak i opracowywania danych hydrograficznych dla wód śródlądowych w Polsce oparto się o standardy i wytyczne Międzynarodowej Organizacji Hydrograficznej (ang. IHO). Problematyka pomiarów na akwenach śródlądowych znacznie różni się od problematyki pomiarów morskich, co stanowiło wyzwanie dla zespołu naukowo-badawczego Akademii Morskiej w Szczecinie. Do wykonania płytkowodnych pomiarów batymetrycznych użyto innowacyjnego rozwiązania, jakim jest sonarowy system interferometryczny. Wyniki badań zawarto w prototypowych komórkach śródlądowych map nawigacyjnych.
EN
Bathymetric data represent a necessary part of the information contained in the cells of inland navigation charts. Due to the lack of standards for hydrographic measurements and data development of inland waters in Poland, the work was based on the guidelines of the International Hydrographic Organization (IHO). Problems in the hydrographic surveying of inland waters are significantly different from the problems of data acquisition at seas, which became a challenge for the research team of Maritime University in Szczecin. An innovative solution was used – a swath-bathymetry interferometric system to perform shallow bathymetric measurements. The results are included in the prototype cells of Polish inland electronic navigational charts.
PL
Stacjonarne wysokoczęstotliwościowe sonary skanujące są coraz częściej wykorzystywane do podwodnego obrazowania obszarów portowych, terenów z budowami hydrotechnicznymi czy miejsc charakterystycznych ze względów nawigacyjnych. Zazwyczaj dane sonarowe są uzupełnieniem danych batymetrycznych o informacje dotyczące charakteru dna oraz obiektów na nim występujących ze względu na swój potencjał interpretacyjny. Wysokorozdzielcze dane o głębokości pozwalają polepszyć analizę obrazu sonarowego poprzez uwzględnienie ich w procesie określania pozycji i przetwarzania obrazu.
EN
The use of rotary scanning sonar allows for more precise bottom examination than standard side scan sonar imaging. High frequency transducer, together with lack of disruption resulting from unit movement and its placement only little above the seabed, ensures very detailed representation of sea bed surface. However, the work characteristic of this device causes a number of issues not occurring in side scan and having a significant impact on the projection and further identification of underwater objects. The other typical data obtained from a surveyed area is its bathymetry. Nowadays, the information acquired by interferometric bathymetry system very precisely represents the sea floor. Usually, the sonar data is only an addition to bathymetric survey. Here, the application of the precise depth data allows to base the whole sonar image processing and to depend its analysis on this data. The basic information of the image is its location, which in this case depends directly on the position of sonar transducer during the signal registration. Due to its completely underwater stand-alone way of work, the exact position of the transducer is unknown. There is no rational possibility of receiving direct information from GPS-RTK receiver.The proposed method bases on approximate position, the bathymetric data, and synthetic sonar image simulator. Rough data of the transducers position may be obtained from the survey unit from which the scanning sonar is lowered to the bottom. On this basis and on the obtained bathymetric data, the synthetic polar sonar image is generated. By the conjunction method, as similarity function, real image is compared to synthetic one. In subsequent steps, new simulated images are generated and compared with the original ones until the best comparison is found. Knowing the seabed configuration, it is easy to tell if the objects found on the registered image lie in a local hollow area or on the hill. It has huge meaning for the way of object representation and identification, especially, when the registration process is taken 30 cm above the sea floor. The differentiation of sonar image processing, depending on a gradient map, allows for independent, local visibility improvement in objects and bottom fragments. In consequence, it allows for improvement in the image interpretational potential. High resolution, very few distortions and the possibility of taking into account additional information can contribute to automation of identification process in sonar imaging.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.