Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents a mathematical model for managing the human factor in the system of continuing airworthiness. The model is based on the entropy evaluation of deviations in technical personnel activities, such as errors and violations recorded during maintenance operations. Using 10 years of statistical data from the “Safety” automated control system on Tu-154 aircraft maintenance (1995-2005), over 100 individual deviations were analyzed and grouped into 20 complex indicators. These were further consolidated into five generalized factors reflecting key areas of organizational performance. Entropy measures were then used to rank these factors according to their contribution to risks affecting continuing airworthiness. The outcome of this analysis is the development of a Human Factor Control System (HFCS) for application within an Maintenance and Repair Organization, ensuring the required level of continuing aircraft airworthiness. The HFCS provides a structured framework for prioritizing management actions, particularly under conditions of limited organizational resources.
EN
This study proposes a probabilistic model to assess the likelihood of passenger survival in fires resulting from aircraft accidents. The model evaluates the risk of passenger death in a fire, considering the type of aircraft and airline. By comparing the time available for passengers to fully evacuate a burning plane with the time required for evacuation using modern means and technologies, onboard rescue equipment, and the qualifications of crew members and rescue personnel, we introduce a comprehensive approach to quantify passenger survival rates. Additionally, the concept of the hazard coefficient is introduced, which accounts for factors such as cabin temperature and toxic components.
EN
The use of near-Earth space for scientific and commercial purposes has skyrocketed in recent years. However, progress continues to be hampered by the cost and availability of vehicles relied upon for delivering payloads to the Earth’s orbit. The Riga Technical University (Latvia), with the assistance of the Technological University in Kielce (Poland), is developing a concept of a novel payload launch system. The implications of such a system for launching payloads into low Earth orbit (LEO) are presented in the article. The system, intended for launching small spacecraft, comprises the A319 MPA transport airplane used as a platform aircraft and a three-stage payload carrier, codenamed LatLaunch. The first and second stages of the three-stage launch vehicle are unmanned winged aircraft. The third stage is a classic rocket which, once dropped from the launch platform, takes the payload to a specific height, at a given rate of speed and at a predetermined trajectory angle. The article presents the results of a study focusing on designing this system.
PL
Przedstawiono wyniki prac nad koncepcją systemu wynoszenia małych statków kosmicznych na niskie orbity okołoziemskie (LEO). Ten system startowy małych statków kosmicznych obejmuje samolot transportowy A319MPA jako samolot platformowy oraz trzystopniowy mały nośnik pojazdów latających o nazwie LatLaunch. Pierwszy i drugi stopień trzystopniowego nośnika małego statku kosmicznego to uskrzydlone statki powietrzne. Trzeci stopień to klasyczna rakieta, która po zrzuceniu przenosi ładunek na określoną wysokość z zadaną prędkością i kątem trajektorii. W artykule przedstawiono wyniki badań nad tworzeniem tego systemu. Zastosowano metody aerodynamiki naddźwiękowej i trójwymiarowego modelowania. W wyniku obliczeń i trójwymiarowego modelowania powstał schemat LatLaunch, który umożliwia zintegrowanie go z platformą powietrzną - trzeci stopień rakiety jest warunkowo przesunięty z wewnętrznego przedziału drugiego stopnia.
EN
Inadequate information support and dispatch of the execution of individual operations of the technological process (especially the repair of composite structures) of aircraft preparation for a flight is one of the reasons for delays. In this regard, there is a need to study the management processes of airport services that ensure the performance of individual technological operations in the preparation of aircraft for departure. This problem belongs to the class of multi-criteria problems, which is solved using simulation modelling. The model is represented by an interconnected set of modules, each of which is associated with a separate technological operation of the general technological process, i.e. the technological process is divided into separate technological operations. The links of individual blocks of the model reflect the information and technological links of a real set of technological operations of flight preparation for departure and are represented by the synthesising algorithm of the simulation model.
EN
The article presents the results of analysis of failures of the main functional systems units of aircraft Boeing 737 during the last 10 years of its operation in the national airline of Latvia ‘Air Baltic Corporation’. Total flight time was T∑ = 322,529 h and 184,538 cycles [1]. These data were obtained from daily reports of defects and unplanned consumption of spare parts for these systems. Failures of instrumental equipment of avionic systems were investigated in detail. Based on calculations of their failure probability and component replacement frequency, a comprehensive system including measures and their technical and instrumental support has been developed to improve maintenance productivity. Such a system requires relatively inexpensive components, is simple and can be used in the operation of this type of aircraft.
EN
This article presents a model and an algorithm for identifying, collecting, processing, analyzing and using data on risks at an airline (deviations from the standards in the activities of various airline units and personnel) to minimize them and thereby to achieve an acceptable level of flight safety. A methodology is also presented for formulating the composition of flight safety indicators, based on an expert approach, for the units and personnel of the airline, making decisions in this field in various areas of its activities. The model is based on the quality and flight safety systems that form part of an integrated management system at one of Latvia’s airlines. The system makes it possible to analyze safety aspects on the basis of actual information drawn from various sources into the airline’s information base, where it is collected, classified, stored and analyzed.
EN
One of the key concepts in matters of flight safety is that of special (abnormal) situations, with airworthiness regulation and certification of aviation equipment being based on this concept. At the same time, one is forced to admit that today there is no explicit interpretation of the standardized traits of special situations, nor are they not fully elucidated in the scientific literature. In this article we propose a pyramidbased approach to interpreting special (abnormal) in-flight situations, which allows for risk assessment not using risk matrices, but instead relying only on the probabilistic characteristics of the occurrence of events. Using the presence of a causal relationship between the layers of the pyramid, we propose an algorithm for the transition of varying degrees of danger of special situations. This algorithm can be used to develop an on-board device that informs the pilot about the dynamics of transitions from one situation to another, representing each emergency situation in a certain color.
PL
Jednym z kluczowych pojęć w obszarze bezpieczeństwa lotów, na którym opierają się przepisy zdatności do lotu i certyfikacja wyposażenia lotniczego, jest pojęcie sytuacji specjalnych (anormalnych). Z drugiej jednak strony obecnie nie ma jednoznacznej interpretacji standardowych cech sytuacji specjalnych, ani nie są one w pełni wyjaśnione w literaturze naukowej. W niniejszym artykule proponowano piramidalne podejście do interpretacji sytuacji specjalnych (anormalnych) w locie, które pozwala na ocenę ryzyka bez użycia macierzy ryzyka, a jedynie w oparciu o probabilistyczną charakterystykę występowania zdarzeń. Wykorzystując fakt, że zachodzi związek przyczynowo-skutkowy pomiędzy warstwami piramidy, proponujemy algorytm identyfikujący przejścia z jednego stopnia zagrożenia sytuacją specjalną do innego stopnia takiego zagrożenia. Algorytm ten może być wykorzystany do opracowania urządzenia pokładowego, które ma za zadanie informować pilota o dynamice przejść z jednej sytuacji do drugiej i sygnalizować każdą sytuację awaryjną określonym kolorem.
EN
This article reviews the methods of safety management using Heinrich’s and Bird’s pyramids. The presence of a causal relationship between pyramid levels, as a result of inconsistencies in the activities of an organization and personnel, lead to incidents, and incidents in turn lead to accidents. The existence of such a relationship makes it possible to predict the risk of “top-level” events by reducing risks at the middle and lower levels. A mathematical description of the development process of an undesired aviation event is presented, which makes it possible to evaluate the probability of the successful (or unsuccessful) completion of a transportation task. Also given is an analysis of the development of an aviation accident, based on the example of the crash of a Lufthansa A-320 aircraft on 14 September 1993 at the airport of Warsaw (Poland) while landing in adverse weather conditions.
PL
W artykule dokonano przeglądu metod zarządzania bezpieczeństwem z wykorzystaniem tzw. piramid Heinricha i Birda. Zachodzenie związku przyczynowo-skutkowego pomiędzy poziomami piramidy, w wyniku niespójności w działaniach organizacji i personelu, prowadzi do incydentów, a incydenty z kolei prowadzą do wypadków. Istnienie takiego związku pozwala na przewidywanie ryzyka zdarzeń “najwyższego poziomu” poprzez ograniczanie ryzyka na poziomach średnim i niższym. Przedstawiono matematyczny opis procesu rozwoju niepożądanego zdarzenia lotniczego, który pozwala na ocenę prawdopodobieństwa pomyślnego (lub niepomyślnego) zakończenia zadania transportowego. Przedstawiono również analizę sposobu rozwoju wypadku lotniczego na przykładzie katastrofy samolotu A-320 linii Lufthansa w dniu 14 września 1993 r. na lotnisku w Warszawie podczas lądowania w niekorzystnych warunkach atmosferycznych.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.