Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Commercially pure titanium (CP-Ti) has been recently used as metallic biomaterials due to excellent biocompatibility and specific strength. CP-Ti has less static and dynamic strength as compared to other metallic biomaterials. Processing by the equal channel angular pressing (ECAP) as one of the most effective severe plastic deformation (SPD) method could lead to an increase in the mechanical strength of materials, significantly. In this study, Grade 2 CP-Ti billet is inserted into Al-7075 casing, and is then deformed by ECAP, with the channel angle of 135°, through 3 passes at route BC and room temperature. The purpose of using casing is to attain higher deformation homogeneity and more material ductility in the billet. The microstructural analysis shows that the coarse grain (CG) CP-Ti is developed to ultra-fine grain (UFG) structures after ECAP. In order to investigate the static and dynamic strength of CG and UFG CP-Ti, the tensile and axial fatigue tests are conducted. The results represent that UFG CP-Ti has much more tensile and fatigue strength than CG CP-Ti, and it could be utilized as biomaterials for production of implants. Surface features of fatigue fracture are also investigated. It should be noted that the investigation of fatigue strength of UFG CP-Ti produced by ECAP at RT utilizing casing, has not been conducted so far.
EN
Improvement of equal channel angular pressing (ECAP) efficiency is an important challenge for industrialization of this technique. The reduction of pressing load and improvement of material mechanical properties are among the most challengeable subjects during this process. In this research, commercial pure aluminum has been ECAPed at room temperature using conventional and ultrasonic vibration techniques to investigate the influence of ultrasonic wave on the pressing load and mechanical characteristics of deformed samples. The results showed that the superimposing ultrasonic vibration on the ECAP process not only decreases the required punch load, but also improves the mechanical properties of the material as compared to the conventional condition. Interestingly, the ultrasonic vibration assisted process leads to about 16%, 10% and 12% increments at the yield strength, ultimate tensile strength and hardness value respectively and also, 9% reduction at the punch load. Furthermore, the dislocation density of the sample produced by ultrasonic assisted ECAP is about 35% more than the achieved conventional sample.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.