In this work we investigate the performance of greedy randomised search (GRS) techniques to the problem of compiling quantum circuits to emerging quantum hardware. Quantum computing (QC) represents the next big step towards power consumption minimisation and CPU speed boost in the future of computing machines. Quantum computing uses quantum gates that manipulate multi-valued bits (qubits ). A quantum circuit is composed of a number of qubits and a series of quantum gates that operate on those qubits, and whose execution realises a specific quantum algorithm. Current quantum computing technologies limit the qubit interaction distance allowing the execution of gates between adjacent qubits only. This has opened the way to the exploration of possible techniques aimed at guaranteeing nearest-neighbor (NN) compliance in any quantum circuit through the addition of a number of so-called swap gates between adjacent qubits. In addition, technological limitations (decoherence effect) impose that the overall duration (makespan) of the quantum circuit realization be minimized. One core contribution of the paper is the definition of two lexicographic ranking functions for quantum gate selection, using two keys: one key acts as a global closure metric to minimise the solution makespan; the second one is a local metric, which favours the mutual approach of the closest qstates pairs. We present a GRS procedure that synthesises NN-compliant quantum circuits realizations, starting from a set of benchmark instances of different size belonging to the Quantum Approximate Optimization Algorithm (QAOA) class tailored for the MaxCut problem. We propose a comparison between the presented meta-heuristics and the approaches used in the recent literature against the same benchmarks, both from the CPU efficiency and from the solution quality standpoint. In particular, we compare our approach against a reference benchmark initially proposed and subsequently expanded in [1] by considering: (i) variable qubit state initialisation and (ii) crosstalk constraints that further restrict parallel gate execution.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
One of the most recent and interesting trends in intelligent scheduling is trying to reduce the energy consumption in order to obtain lower production costs and smaller carbon footprint. In this work we consider the energy-aware job shop scheduling problem, where we have to minimize at the same time an efficiency-based objective, as is the total weighted tardiness, and also the overall energy consumption. We experimentally show that we can reduce the energy consumption of a given schedule by delaying some operations, and to this end we design a heuristic procedure to improve a given schedule. As the problem is computationally complex, we design three approaches to solve it: a Pareto-based multiobjective evolutionary algorithm, which is hybridized with a multiobjective local search method and a linear programming step, a decomposition-based multiobjective evolutionary algorithm hybridized with a single-objective local search method, and finally a constraint programming approach. We perform an extensive experimental study to analyze our algorithms and to compare them with the state of the art.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.