The aim of the conducted study was to isolate, identify and characterize suitable bacterial strains from UCG wastewater as potential candidates for the bioaugmentation approach. For this purpose, the straightforward cultivation procedure and unique biochemical selection were employed to gain insights into the specific properties of bacteria. From the 100 strains isolated from UCG wastewater, three (Paenibacillus pasadensis SAFN-007, Peanibacillus humicus Au34, and Staphylococcus warneri DK131) demonstrated the capacity to degrade phenol and specific biochemical properties. Phenol degradation reached more than 90% for the above-mentioned strains, while the average phenol removal rate for other selected strains was 82.9%, ranging from 66.1% to 90%. The bacterial strains belong to multi-enzyme producers and constitute a possible source of potential technologically important enzymes. Phenotypic microarray plates were used to characterise the metabolic properties of the strains. It was found that 74%, 67.4% and 94.2% of the carbon metabolites tested were utilised by Paenibacillus pasadensis SAFN-007, Peanibacillus humicus Au34 and Staphylococcus warneri DK131, respectively. Among C sources, the strains have the capability to metabolize some substrates appearing in phenol pathways, such as: N-acetyl-D-glucosamine, succinic acid, α-hydroxy-glutaric acid-γ-lactone, bromosuccinic acid, mono-methyl succinate, methyl-pyruvate, p-hydroxy-phenyl acetic acid, m-hydroxyphenylacetic acid, L-galactonic acid-γ-lactone, D-galactonic acid-γ- lactone, phenylethylamine. Bacteria show different levels of tolerance to pH and osmolality, and they can thrive in different habitats. Another characteristic of these strains is their high resistance to many antibiotics (multi-resistant bacteria). These properties allow the use of the isolated bacterial strains as good candidates for bioremediation of phenol-contaminated environments. The wastewater from the underground coal gasification process is an example of a good extreme environment for the isolation of unique bacteria with specific metabolic properties.
Millions of tons of casting waste are generated annually worldwide, which should be subjected to recycling, as per the principles of circular economy. Spent foundry sands can be used for producing soil substitutes, but the process should yield products with guaranteed biological safety. The goal of this work was to conduct a safety evaluation of soil substitutes produced based on casting and organic waste. Toxicity tests were performed for this purpose, based on measurements involving the germination efficiency and the effect of the studied compositions on the biomass, sprout and root growth of Sinapis alba. In addition, an analysis of the content of chlorophyll A and B and of carotenoids was carried out, as well as a measurement of the lipid peroxidation level (content of malondialdehyde – MDA) to assess the potential oxidative stress in the tested plants. The compositions for soil formation prepared using casting waste as a mineral fraction and organic waste (compost, green waste, biogas plant digestate) had a stimulating effect on the rhizospheric and epigeal part growth of Sinapis alba. The germination efficiency in the prepared soil substitutes exhibited no significant difference from the germination efficiency in the control sample. However, the presence of oxidative stress (increased carotenoid and MDA contents) was found in the substitute containing green waste, which could be the result of water deficiency in the plants growing in this substrate. The complex testing of the compositions prepared based on casting waste (spent foundry sand) proved the validity of using such products as soil substitutes.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.