Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Application of advanced mesh based methods, including adaptive finite element method, is impossible without theoretical elaboration and practical realization of a model for organization and functionality of computational mesh. One of the most basic mesh functionality is storing and providing geometrical coordinates for vertices and other mesh entities. New algorithm for this task based on on-the-fly recreation of coordinates was developed. Conducted tests are proving that, for selected cases, it can be orders of magnitude faster than naive approach or other similar algorithms.
EN
The development of the concept of Thermomechanical Controlled Processing (TMCP) in the wire rod rolling mill of CMC Poland has opened up new opportunities for the production of fasteners without the application of heat treatment. The crucial effect of TMCP in the case of wire rod rolling is its capability of shaping fine austenite grain size following the last pass, typically below 20–25 µm in the wire rod cross-section. This is a prerequisite for obtaining the required cold workability level for the cold forming of fasteners, even if hard constituents (bainite, martensite) are present in the wire rod structure. In this paper, the physical simulation and numerical modelling capabilities were described for the design of cooling conditions in the Stelmor process and cold heading operation. The investigated material was conventional 32CrB4 grade used for the fasteners production with the application of heat treatment.
EN
It is generally recognized that the kinetics of phase transformations during the cooling of steel products depends to a large extent on the state of the austenite after rolling. Austenite deformation (when recrystallization is not complete) and grain size have a strong influence on the nucleation and growth of low-temperature phases. Thus, the general objective of the present work was the formulation of a numerical model which simulates thermal, mechanical and microstructural phenomena during multipass hot rolling of flat bars. The simulation of flat bar rolling accounting for the evolution of a heterogeneous microstructure was the objective of the work. A conventional finite-element program was used to calculate the distribution of strains, stresses, and temperatures in the flat bar during rolling and during interpass times. The FE program was coupled with the stochastic model describing austenite microstructure evolution. In this model, the random character of the recrystallization was accounted for. Simulations supplied information about the distributions of the dislocation density and the grain size at various locations through the thickness of the bars.
EN
The paper deals with the new approach to the optimization of the pearlitic rail’s head hardening process aimed at balancing the relation between strength and ductility of the head running surface. In the industrial process, efforts have been undertaken so far to maximize the hardness of the rail’s head while maintaining its pearlite structure, resulting in obtaining enhanced wear resistance and resistance to the contact fatigue defects initiation. The new approach, described in this paper, aims at designing the head hardening process enabling achievement of the high hardness of the running surface combined with high ductility expressed in terms of the total elongation. To achieve this aim of the investigation, a computer program was developed capable of predicting the occurrence of the phase transformations during rail head cooling and microstructure features after cooling. The program was linked with dedicated inverse module enabling the adjustment of the cooling conditions to achieve the required state of the pearlitic structure.
PL
W artykule przedstawiono nowe podejście do optymalizacji procesu obróbki cieplnej szyn perlitycznych, którego celem jest uzyskanie korzystnej relacji między twardością a ciągliwością warstwy tocznej główki szyn. Opracowane dotychczas technologie obróbki cieplnej szyn perlitycznych stawiały sobie za cel uzyskanie jak najwyższej twardości powierzchni tocznej główki, przy zachowaniu struktury perlitycznej tej powierzchni. Dzięki temu uzyskuje się znaczący wzrost odporności tej powierzchni na procesy zużycia i inicjowanie wad kontaktowo-zmęczeniowych. Zaproponowana metoda obróbki cieplnej umożliwia uzyskanie bardzo wysokiej twardości powierzchni tocznej, ale równocześnie, pozwala na uzyskanie wysokiej ciągliwości tej warstwy, wyrażonej poprzez wydłużenie do zerwania w statycznej próbie rozciągania. Warunki obróbki cieplnej, spełniającej powyższe założenia, opracowano stosując dedykowany program komputerowy, który symuluje przemiany fazowe w szynie, z możliwością przeprowadzenia optymalizacji procesu z zastosowaniem metody obliczeń odwrotnych.
EN
The paper describes a critical comparison of mean field and full field approaches to modelling hot deformation/controlled cooling sequences for steels. Classification of the models, based on the balance between predictive capabilities and computing costs, is presented. Mean field models, which describe microstructure evolution and phase transformations were connected with thermomechanical finite element program and applied to simulation of the hot strip rolling process and cooling of tubes after hot rolling. Full field model described in the paper is a connection of the finite element (FE) and level set (LSM) methods. These methods were used to simulate heating/cooling sequence in the continuous annealing line. A suggestion to use a stochastic model as a bridge between mean field and full field approaches is made.
EN
Computer system for the design of technology of the manufacturing of pearlitic and bainitic rails was presented in this paper. The system consists of the FEM simulation module of thermal–mechanical phenomena and microstructure evolution during hot rolling integrated with the module of phase transformation occurring during cooling. Model parameters were identified based on dilatometric tests. Physical simulations, including Gleeble tests, were used for validation and verification of the models. In the case of pearlitic steels, the process of subsequent immersions of the rail head in the polymer solution was numerically simulated. The objective function in the optimization procedure was composed of minimum interlamellar spacing and maximum hardness. Cooling in the air at a cooling bed was simulated for the bainitic steel rails and mechanical properties were predicted. The obtained results allowed us to formulate technological guidelines for the process of accelerated cooling of rails.
EN
Evaluation of the possibility of substitution of steel part in the car body by the one made of AZ31 alloy was the main objective of the whole project. The objective of this paper was to determine the flow stress model, which accounts for the difference in the behavior of magnesium alloys during tension and compression. Tension tests on Zwick machine and compression tests on Gleeble 3800 were performed. Inverse analysis was applied to interpretation of the results of the tests. Separate numerical models for tension and compression were implemented into Abaqus software and simulations of the stamping were performed. Sensitivity of the results to the flow stress model was evaluated.
EN
The paper presents metallurgically based approach allowing the design of the parameters of the pearlitic rail head heat treatment to obtain the targeted mechanical properties. The described solutions enable predicting the progress of phase transformations, final microstructure and mechanical properties distribution in the pearlitic rail subject to heat treatment. It also allows the optimization of the cooling conditions to obtain a strictly defined distribution of mechanical properties in the rail head. The program is developed as a result of research activities performed in the HyPremRail R&D project. The core of the program consists of the phase transformations model which is implemented in the numerical code based on the FEM for heat transfer calculations. The model predicts the pearlite nodule and colony size as well as cementite interlamellar spacing. Using these parameters, strength properties distribution in the rail can be predicted, since the phase transformations model is combined with the Fourier heat transfer equation. To perform the numerical simulations, the boundary conditions for heat treatment should be defined. On the contrary, using inverse analysis, the program can provide the cooling conditions allowing obtaining defined mechanical properties distribution in rail head.
PL
Artykuł przedstawia matematyczny model oparty na wiedzy metaloznawczej, umożliwiający zaprojektowanie parametrów obróbki cieplnej główki szyny ze stali perlitycznej w celu uzyskania pożądanych właściwości mechanicznych. Dzięki implementacji modelu w programie komputerowym opartym na metodzie elementów skończonych możliwe jest śledzenie postępu przemian fazowych w trakcie obróbki cieplnej główki szyny o strukturze perlitycznej, a w efekcie końcowym również przewidywanie parametrów mikrostruktury finalnej oraz właściwości mechanicznych szyny. Drugą funkcją programu jest określenie warunków obróbki cieplnej powodujących uzyskanie założonego rozkładu właściwości mechanicznych w główce szyny obrabianej cieplnie. Prezentowane podejście oraz program komputerowy opracowano w ramach prac związanych z realizacją projektu badawczo-rozwojowego „HyPremRail”. Po zadaniu warunków chłodzenia program realizuje lokalnie obliczenia odległości między płytkami cementytu, wielkości ziarna i kolonii perlitu w oparciu o opracowany model przemian fazowych, posługując się rozwiązaniem MES równania Fouriera, a następnie przelicza wartości uzyskanej odległości międzypłytkowej na twardość, granicę plastyczności i wytrzymałość na rozciąganie. Przeprowadzenie obliczeń wymaga zdefiniowania warunków początkowych i brzegowych procesu obróbki cieplnej. Z kolei zagadnienie optymalizacji parametrów procesu w celu uzyskania korzystnego rozkładu właściwości mechanicznych w obszarze główki rozwiązywane jest za pomocą metody obliczeń odwrotnych.
EN
The model describing evolution of dislocation population based on fundamental works of Kocks, Estrin and Mecking (KEM) is a useful tool in modelling of metallic materials processing. In combination with the Sandstrom and Lagneborg approach it can predict changes of the dislocation density accounting for hardening, recovery and recrystallization. Numerical solutions of a one-parameter model (average dislocation density), as well as for two types of dislocations and three types of dislocation are described in the literature. All these solutions were performed for deterministic variables. On the other hand, an advanced modelling of materials requires often an information about distribution of parameters. This is the case when uncertainty of the model has to be evaluated or when an information about distribution of product properties is needed. The latter is crucial when deterioration of local formability is caused by sharp gradients of properties. Thus, the investigation of possibilities of numerical solution for the KEM model with stochastic variables was the main objective of the present work. Evolution equation was written for the distribution function and solution was performed using Monte Carlo method. Analysis of the results with respect to the reliability and computing costs was performed. The conclusions towards selection of the best approach were formulated.
PL
Model opisujący ewolucję populacji dyslokacji wykorzystujący fundamentalne prace Kocksa, Estrina i Meckinga (KEM model) jest użytecznym narzędziem w modelowaniu przetwórstwa materiałów metalicznych. W połączeniu z modelem Sandstroma i Lagneborga możliwe jest przewidywanie zmian gęstości dyslokacji uwzględniając zjawiska umocnienia, zdrowienia i rekrystalizacji. Numeryczne rozwiązania dla jednoparametrowego modelu (średniej gęstości dyslokacji), jak i dla dwóch lub trzech rozdajów dyslokacji, jest opisane w literaturze. Te rozwiązania zostały przeprowadzone dla zmiennych deterministycznych. Z drugiej strony zaawansowane modelowanie materiałów wymaga informacji o rozkładzie parametrów. Ma to miejsce np., kiedy potrzebna jest ocena niepewności wyników lub informacja o funkcji rozkładu własności materiału. To ostatnie jest ważne, kiedy obniżenie lokalnej odporności mateiału na pękanie jest powodowane przez ostre gradienty własności. Stąd celem niniejszej pracy była ocena możliwości numerycznego rozwiązania dla modelu KEM ze zmiennymi losowymi. Równanie ewolucji dyslokacji zapisano dla funkcji rozkładu prawdopodobieństwa i przeprowadzono rozwiązanie wykorzystując metodę Monte Carlo. Przeprowadzono analizę wyników w aspekcie ich dokładności oraz oceniając koszty obliczeń. Sformułowane zostały wnioski sugerujące dobór najlepszych parametrów modelu numerycznego.
EN
This work presents organization, architecture and synthesis as well as analysis of the reconfigurable heterogeneous parallel processing system. Reconfiguration takes place on two levels of the connection network: physical and logical. For its implementation, passive multi-channel optical networks were used. Due to its dynamic nature, the system is designed to handle computational and communication load of an explosive nature and is addressed in the first place to the production sphere of economy. The dynamically combined connection network not only prevents traffic bursts, but also based on the physical and logical circuit commutation gives the possibility of adapting to the existing traffic pattern. Although the described solution is addressed to the optical transmission environment, its effective functioning in the Ethernet networks with circuit switching and partly in wireless networks has been confirmed empirically. The theoretical foundations were verified in the design and construction of a reconfigurable super-microcomputer and the intelligent system detection of attacks addressed to industrial Internet.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.