Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper evaluates near ship-ship collision situations in the Tagus River Estuary using a simulation model of ship navigation in restricted waters. The simulation model consists of a ship collision avoidance model based on the Artificial Potential Field (APF) method, which has been improved to account for the lateral distribution of traffic along the route, the ship type and length and speed development of the ships along the trajectory. AIS data of ships entering and leaving the port of Lisbon are analysed to obtain the main characteristics of traffic parameters used as input for the traffic simulation model, such as: the routes of the vessels, speed distribution along the routes, traffic density and characteristics of the ships in each route, among others. First, the improved model of ship navigation and the Monte Carlo simulation technique are used to simulate the marine traffic in the Tagus River Estuary. Then, the concept of “ship domain” is used as collision criterion to determine the number of near collisions and the locations where they are most likely to occur. Finally, the simulation results are compared to the ones obtained from raw AIS data to assess the capability of the simulation model for marine traffic risk analysis.
EN
The ridge regression is presented for identify manoeuvring indices in Nomoto’s model, and the result indicates that the method is robust and does not rely on initial estimation. For selecting appropriate AIS data for manoeuvring indices predicting, a frequency domain identification method is presented.
EN
Discovering new applications for cotton fiber in thermally bonded nonwovens has required the introduction of thermoplastic fibers having low softening temperatures. Finding the appropriate thermoplastic fiber that is both biodegradable/compostable and thermally compatible with cotton is an important consideration. Cellulose acetate is an appropriate choice for this bonding fiber. Our studies indicate that aqueous solutions containing small percentages of acetone lower thermal processing temperatures and significantly enhance properties of thermally calendered nonwovens. More recent studies have investigated the influence of water pretreatment without acetone additive and have shown that thermal processing is positively modified. Comparisons are drawn between the thermal characterization of bond points and with or without pre-treatment of blended webs prior to calendering. Similar comparisons are made on physical properties of the calendered nonwovens fabrics.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.